ToC = {
'1. Collections': [List, Dictionary, Set, Tuple, Range, Enumerate, Iterator, Generator],
'2. Types': [Type, String, Regular_Exp, Format, Numbers, Combinatorics, Datetime],
'3. Syntax': [Args, Inline, Import, Decorator, Class, Duck_Types, Enum, Exception],
'4. System': [Exit, Print, Input, Command_Line_Arguments, Open, Path, OS_Commands],
'5. Data': [JSON, Pickle, CSV, SQLite, Bytes, Struct, Array, Memory_View, Deque],
'6. Advanced': [Threading, Operator, Introspection, Metaprograming, Eval, Coroutine],
'7. Libraries': [Progress_Bar, Plot, Table, Curses, Logging, Scraping, Web, Profile,
NumPy, Image, Audio, Games, Data]
}
if __name__ == '__main__': # Runs main() if file wasn't imported.
main()
<list> = <list>[<slice>] # Or: <list>[from_inclusive : to_exclusive : ±step]
<list>.append(<el>) # Or: <list> += [<el>]
<list>.extend(<collection>) # Or: <list> += <collection>
<list>.sort() # Sorts in ascending order.
<list>.reverse() # Reverses the list in-place.
<list> = sorted(<collection>) # Returns a new sorted list.
<iter> = reversed(<list>) # Returns reversed iterator.
sum_of_elements = sum(<collection>)
elementwise_sum = [sum(pair) for pair in zip(list_a, list_b)]
sorted_by_second = sorted(<collection>, key=lambda el: el[1])
sorted_by_both = sorted(<collection>, key=lambda el: (el[1], el[0]))
flatter_list = list(itertools.chain.from_iterable(<list>))
product_of_elems = functools.reduce(lambda out, el: out * el, <collection>)
list_of_chars = list(<str>)
<list>.insert(<int>, <el>) # Inserts item at index and moves the rest to the right.
<el> = <list>.pop([<int>]) # Removes and returns item at index or from the end.
<int> = <list>.count(<el>) # Returns number of occurrences. Also works on strings.
<int> = <list>.index(<el>) # Returns index of the first occurrence or raises ValueError.
<list>.remove(<el>) # Removes first occurrence of the item or raises ValueError.
<list>.clear() # Removes all items. Also works on dictionary and set.
<view> = <dict>.keys() # Coll. of keys that reflects changes.
<view> = <dict>.values() # Coll. of values that reflects changes.
<view> = <dict>.items() # Coll. of key-value tuples that reflects chgs.
value = <dict>.get(key, default=None) # Returns default if key is missing.
value = <dict>.setdefault(key, default=None) # Returns and writes default if key is missing.
<dict> = collections.defaultdict(<type>) # Returns a dict with default value of type.
<dict> = collections.defaultdict(lambda: 1) # Returns a dict with default value 1.
<dict> = dict(<collection>) # Creates a dict from coll. of key-value pairs.
<dict> = dict(zip(keys, values)) # Creates a dict from two collections.
<dict> = dict.fromkeys(keys [, value]) # Creates a dict from collection of keys.
<dict>.update(<dict>) # Adds items. Replaces ones with matching keys.
value = <dict>.pop(key) # Removes item or raises KeyError.
{k for k, v in <dict>.items() if v == value} # Returns set of keys that point to the value.
{k: v for k, v in <dict>.items() if k in keys} # Returns a dictionary, filtered by keys.
>>> from collections import Counter
>>> colors = ['blue', 'blue', 'blue', 'red', 'red']
>>> counter = Counter(colors)
>>> counter['yellow'] += 1
Counter({'blue': 3, 'red': 2, 'yellow': 1})
>>> counter.most_common()[0]
('blue', 3)
<set> = set() # `{}` returns a dictionary.
<set>.add(<el>) # Or: <set> |= {<el>}
<set>.update(<collection> [, ...]) # Or: <set> |= <set>
<set> = <set>.union(<coll.>) # Or: <set> | <set>
<set> = <set>.intersection(<coll.>) # Or: <set> & <set>
<set> = <set>.difference(<coll.>) # Or: <set> - <set>
<set> = <set>.symmetric_difference(<coll.>) # Or: <set> ^ <set>
<bool> = <set>.issubset(<coll.>) # Or: <set> <= <set>
<bool> = <set>.issuperset(<coll.>) # Or: <set> >= <set>
<el> = <set>.pop() # Raises KeyError if empty.
<set>.remove(<el>) # Raises KeyError if missing.
<set>.discard(<el>) # Doesn't raise an error.
<frozenset> = frozenset(<collection>)
Tuple is an immutable and hashable list.
<tuple> = () # Empty tuple.
<tuple> = (<el>,) # Or: <el>,
<tuple> = (<el_1>, <el_2> [, ...]) # Or: <el_1>, <el_2> [, ...]
Tuple's subclass with named elements.
>>> from collections import namedtuple
>>> Point = namedtuple('Point', 'x y')
>>> p = Point(1, y=2)
Point(x=1, y=2)
>>> p[0]
1
>>> p.x
1
>>> getattr(p, 'y')
2
Immutable and hashable sequence of integers.
<range> = range(stop) # range(to_exclusive)
<range> = range(start, stop) # range(from_inclusive, to_exclusive)
<range> = range(start, stop, ±step) # range(from_inclusive, to_exclusive, ±step_size)
>>> [i for i in range(3)]
[0, 1, 2]
for i, el in enumerate(<collection> [, i_start]):
...
<iter> = iter(<collection>) # `iter(<iter>)` returns unmodified iterator.
<iter> = iter(<function>, to_exclusive) # A sequence of return values until 'to_exclusive'.
<el> = next(<iter> [, default]) # Raises StopIteration or returns 'default' on end.
<list> = list(<iter>) # Returns a list of iterator's remaining elements.
import itertools as it
<iter> = it.count(start=0, step=1) # Returns updated value endlessly. Accepts floats.
<iter> = it.repeat(<el> [, times]) # Returns element endlessly or 'times' times.
<iter> = it.cycle(<collection>) # Repeats the sequence endlessly.
<iter> = it.chain(<coll>, <coll> [, ...]) # Empties collections in order (figuratively).
<iter> = it.chain.from_iterable(<coll>) # Empties collections inside a collection in order.
<iter> = it.islice(<coll>, to_exclusive) # Only returns first 'to_exclusive' elements.
<iter> = it.islice(<coll>, from_inc, …) # `to_exclusive, +step_size`. Indices can be None.
def count(start, step):
while True:
yield start
start += step
>>> counter = count(10, 2)
>>> next(counter), next(counter), next(counter)
(10, 12, 14)
<type> = type(<el>) # Or: <el>.__class__
<bool> = isinstance(<el>, <type>) # Or: issubclass(type(<el>), <type>)
>>> type('a'), 'a'.__class__, str
(<class 'str'>, <class 'str'>, <class 'str'>)
from types import FunctionType, MethodType, LambdaType, GeneratorType, ModuleType
Each abstract base class specifies a set of virtual subclasses. These classes are then recognized by isinstance() and issubclass() as subclasses of the ABC, although they are really not. ABC can also manually decide whether or not a specific class is its virtual subclass, usually based on which methods the class has implemented. For instance, Iterable ABC looks for method iter(), while Collection ABC looks for iter(), contains() and len().
>>> from collections.abc import Iterable, Collection, Sequence
>>> isinstance([1, 2, 3], Iterable)
True
┏━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━┓
┃ │ Iterable │ Collection │ Sequence ┃
┠──────────────────┼────────────┼────────────┼────────────┨
┃ list, range, str │ ✓ │ ✓ │ ✓ ┃
┃ dict, set │ ✓ │ ✓ │ ┃
┃ iter │ ✓ │ │ ┃
┗━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━┛
>>> from numbers import Number, Complex, Real, Rational, Integral
>>> isinstance(123, Number)
True
┏━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━━┓
┃ │ Number │ Complex │ Real │ Rational │ Integral ┃
┠────────────────────┼──────────┼──────────┼──────────┼──────────┼──────────┨
┃ int │ ✓ │ ✓ │ ✓ │ ✓ │ ✓ ┃
┃ fractions.Fraction │ ✓ │ ✓ │ ✓ │ ✓ │ ┃
┃ float │ ✓ │ ✓ │ ✓ │ │ ┃
┃ complex │ ✓ │ ✓ │ │ │ ┃
┃ decimal.Decimal │ ✓ │ │ │ │ ┃
┗━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━━┛
<str> = <str>.strip() # Strips all whitespace characters from both ends.
<str> = <str>.strip('<chars>') # Strips all passed characters from both ends.
<list> = <str>.split() # Splits on one or more whitespace characters.
<list> = <str>.split(sep=None, maxsplit=-1) # Splits on 'sep' str at most 'maxsplit' times.
<list> = <str>.splitlines(keepends=False) # On [\n\r\f\v\x1c-\x1e\x85\u2028\u2029] and \r\n.
<str> = <str>.join(<coll_of_strings>) # Joins elements using string as a separator.
<bool> = <sub_str> in <str> # Checks if string contains the substring.
<bool> = <str>.startswith(<sub_str>) # Pass tuple of strings for multiple options.
<bool> = <str>.endswith(<sub_str>) # Pass tuple of strings for multiple options.
<int> = <str>.find(<sub_str>) # Returns start index of the first match or -1.
<int> = <str>.index(<sub_str>) # Same, but raises ValueError if missing.
<str> = <str>.replace(old, new [, count]) # Replaces 'old' with 'new' at most 'count' times.
<str> = <str>.translate(<table>) # Use `str.maketrans(<dict>)` to generate table.
<str> = chr(<int>) # Converts int to Unicode character.
<int> = ord(<str>) # Converts Unicode character to int.
'lstrip()'
, 'rstrip()'
and 'rsplit()'
.'lower()'
, 'upper()'
, 'capitalize()'
and 'title()'
.┏━━━━━━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━━┓
┃ │ [ !#$%…] │ [a-zA-Z] │ [¼½¾] │ [²³¹] │ [0-9] ┃
┠───────────────┼──────────┼──────────┼──────────┼──────────┼──────────┨
┃ isprintable() │ ✓ │ ✓ │ ✓ │ ✓ │ ✓ ┃
┃ isalnum() │ │ ✓ │ ✓ │ ✓ │ ✓ ┃
┃ isnumeric() │ │ │ ✓ │ ✓ │ ✓ ┃
┃ isdigit() │ │ │ │ ✓ │ ✓ ┃
┃ isdecimal() │ │ │ │ │ ✓ ┃
┗━━━━━━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━━┛
'isspace()'
checks for whitespaces: '[ \t\n\r\f\v\x1c-\x1f\x85\xa0\u1680…]'
.import re
<str> = re.sub(<regex>, new, text, count=0) # Substitutes all occurrences with 'new'.
<list> = re.findall(<regex>, text) # Returns all occurrences as strings.
<list> = re.split(<regex>, text, maxsplit=0) # Use brackets in regex to include the matches.
<Match> = re.search(<regex>, text) # Searches for first occurrence of the pattern.
<Match> = re.match(<regex>, text) # Searches only at the beginning of the text.
<iter> = re.finditer(<regex>, text) # Returns all occurrences as Match objects.
'flags=re.IGNORECASE'
can be used with all functions.'flags=re.MULTILINE'
makes '^'
and '$'
match the start/end of each line.'flags=re.DOTALL'
makes '.'
also accept the '\n'
.r'\1'
or '\\1'
for backreference ('\1'
returns a character with octal code 1).'?'
after '*'
and '+'
to make them non-greedy.<str> = <Match>.group() # Returns the whole match. Also group(0).
<str> = <Match>.group(1) # Returns part in the first bracket.
<tuple> = <Match>.groups() # Returns all bracketed parts.
<int> = <Match>.start() # Returns start index of the match.
<int> = <Match>.end() # Returns exclusive end index of the match.
'\d' == '[0-9]' # Matches decimal characters.
'\w' == '[a-zA-Z0-9_]' # Matches alphanumerics and underscore.
'\s' == '[ \t\n\r\f\v]' # Matches whitespaces.
'flags=re.ASCII'
argument is used.'\s'
from accepting '[\x1c-\x1f]'
(the so-called separator characters).<str> = f'{<el_1>}, {<el_2>}' # Curly brackets can also contain expressions.
<str> = '{}, {}'.format(<el_1>, <el_2>) # Or: '{0}, {a}'.format(<el_1>, a=<el_2>)
<str> = '%s, %s' % (<el_1>, <el_2>) # Redundant and inferior C-style formatting.
>>> Person = collections.namedtuple('Person', 'name height')
>>> person = Person('Jean-Luc', 187)
>>> f'{person.name} is {person.height / 100} meters tall.'
'Jean-Luc is 1.87 meters tall.'
{<el>:<10} # '<el> '
{<el>:^10} # ' <el> '
{<el>:>10} # ' <el>'
{<el>:.<10} # '<el>......'
{<el>:0} # '<el>'
f'{<el>:{<str/int>}[…]}'
.'='
to the expression prepends it to the output: f'{1+1=}'
returns '1+1=2'
.'!r'
to the expression converts object to string by calling its repr() method.{'abcde':10} # 'abcde '
{'abcde':10.3} # 'abc '
{'abcde':.3} # 'abc'
{'abcde'!r:10} # "'abcde' "
{123456:10} # ' 123456'
{123456:10,} # ' 123,456'
{123456:10_} # ' 123_456'
{123456:+10} # ' +123456'
{123456:=+10} # '+ 123456'
{123456: } # ' 123456'
{-123456: } # '-123456'
{1.23456:10.3} # ' 1.23'
{1.23456:10.3f} # ' 1.235'
{1.23456:10.3e} # ' 1.235e+00'
{1.23456:10.3%} # ' 123.456%'
┏━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┓
┃ │ {<float>} │ {<float>:f} │ {<float>:e} │ {<float>:%} ┃
┠──────────────┼────────────────┼────────────────┼────────────────┼────────────────┨
┃ 0.000056789 │ '5.6789e-05' │ '0.000057' │ '5.678900e-05' │ '0.005679%' ┃
┃ 0.00056789 │ '0.00056789' │ '0.000568' │ '5.678900e-04' │ '0.056789%' ┃
┃ 0.0056789 │ '0.0056789' │ '0.005679' │ '5.678900e-03' │ '0.567890%' ┃
┃ 0.056789 │ '0.056789' │ '0.056789' │ '5.678900e-02' │ '5.678900%' ┃
┃ 0.56789 │ '0.56789' │ '0.567890' │ '5.678900e-01' │ '56.789000%' ┃
┃ 5.6789 │ '5.6789' │ '5.678900' │ '5.678900e+00' │ '567.890000%' ┃
┃ 56.789 │ '56.789' │ '56.789000' │ '5.678900e+01' │ '5678.900000%' ┃
┗━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┛
┏━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┓
┃ │ {<float>:.2} │ {<float>:.2f} │ {<float>:.2e} │ {<float>:.2%} ┃
┠──────────────┼────────────────┼────────────────┼────────────────┼────────────────┨
┃ 0.000056789 │ '5.7e-05' │ '0.00' │ '5.68e-05' │ '0.01%' ┃
┃ 0.00056789 │ '0.00057' │ '0.00' │ '5.68e-04' │ '0.06%' ┃
┃ 0.0056789 │ '0.0057' │ '0.01' │ '5.68e-03' │ '0.57%' ┃
┃ 0.056789 │ '0.057' │ '0.06' │ '5.68e-02' │ '5.68%' ┃
┃ 0.56789 │ '0.57' │ '0.57' │ '5.68e-01' │ '56.79%' ┃
┃ 5.6789 │ '5.7' │ '5.68' │ '5.68e+00' │ '567.89%' ┃
┃ 56.789 │ '5.7e+01' │ '56.79' │ '5.68e+01' │ '5678.90%' ┃
┗━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┛
'{<float>:g}'
is '{<float>:.6}'
with stripped zeros, exponent starting at 7 figures.'{6.5:.0f}'
a '6'
and '{7.5:.0f}'
an '8'
..5
, .25
, …).{90:c} # 'Z'
{90:b} # '1011010'
{90:X} # '5A'
<int> = int(<float/str/bool>) # Or: math.floor(<float>)
<float> = float(<int/str/bool>) # Or: <real>e±<int>
<complex> = complex(real=0, imag=0) # Or: <real> ± <real>j
<Fraction> = fractions.Fraction(0, 1) # Or: Fraction(numerator=0, denominator=1)
<Decimal> = decimal.Decimal(<str/int>) # Or: Decimal((sign, digits, exponent))
'int(<str>)'
and 'float(<str>)'
raise ValueError on malformed strings.'1.1 + 2.2 != 3.3'
.'math.isclose(<float>, <float>)'
.'decimal.getcontext().prec = <int>'
.<num> = pow(<num>, <num>) # Or: <num> ** <num>
<num> = abs(<num>) # <float> = abs(<complex>)
<num> = round(<num> [, ±ndigits]) # `round(126, -1) == 130`
from math import e, pi, inf, nan, isinf, isnan # `<el> == nan` is always False.
from math import sin, cos, tan, asin, acos, atan # Also: degrees, radians.
from math import log, log10, log2 # Log can accept base as second arg.
from statistics import mean, median, variance # Also: stdev, quantiles, groupby.
from random import random, randint, choice # Also: shuffle, gauss, triangular, seed.
<float> = random() # A float inside [0, 1).
<int> = randint(from_inc, to_inc) # An int inside [from_inc, to_inc].
<el> = choice(<sequence>) # Keeps the sequence intact.
<int> = ±0b<bin> # Or: ±0x<hex>
<int> = int('±<bin>', 2) # Or: int('±<hex>', 16)
<int> = int('±0b<bin>', 0) # Or: int('±0x<hex>', 0)
<str> = bin(<int>) # Returns '[-]0b<bin>'.
<int> = <int> & <int> # And (0b1100 & 0b1010 == 0b1000).
<int> = <int> | <int> # Or (0b1100 | 0b1010 == 0b1110).
<int> = <int> ^ <int> # Xor (0b1100 ^ 0b1010 == 0b0110).
<int> = <int> << n_bits # Left shift. Use >> for right.
<int> = ~<int> # Not. Also -<int> - 1.
import itertools as it
>>> it.product([0, 1], repeat=3)
[(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),
(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)]
>>> it.product('abc', 'abc') # a b c
[('a', 'a'), ('a', 'b'), ('a', 'c'), # a x x x
('b', 'a'), ('b', 'b'), ('b', 'c'), # b x x x
('c', 'a'), ('c', 'b'), ('c', 'c')] # c x x x
>>> it.combinations('abc', 2) # a b c
[('a', 'b'), ('a', 'c'), # a . x x
('b', 'c')] # b . . x
>>> it.combinations_with_replacement('abc', 2) # a b c
[('a', 'a'), ('a', 'b'), ('a', 'c'), # a x x x
('b', 'b'), ('b', 'c'), # b . x x
('c', 'c')] # c . . x
>>> it.permutations('abc', 2) # a b c
[('a', 'b'), ('a', 'c'), # a . x x
('b', 'a'), ('b', 'c'), # b x . x
('c', 'a'), ('c', 'b')] # c x x .
<D>
, 'time' <T>
, 'datetime' <DT>
and 'timedelta' <TD>
classes. All are immutable and hashable.<a>
, meaning they have defined timezone, or 'naive' <n>
, meaning they don't.from datetime import date, time, datetime, timedelta
from dateutil.tz import UTC, tzlocal, gettz, datetime_exists, resolve_imaginary
<D> = date(year, month, day) # Only accepts valid dates from 1 to 9999 AD.
<T> = time(hour=0, minute=0, second=0) # Also: `microsecond=0, tzinfo=None, fold=0`.
<DT> = datetime(year, month, day, hour=0) # Also: `minute=0, second=0, microsecond=0, …`.
<TD> = timedelta(weeks=0, days=0, hours=0) # Also: `minutes=0, seconds=0, microseconds=0`.
'<D/DT>.weekday()'
to get the day of the week as an int, with Monday being 0.'fold=1'
means the second pass in case of time jumping back for one hour.'<DTa> = resolve_imaginary(<DTa>)'
fixes DTs that fall into the missing hour.<D/DTn> = D/DT.today() # Current local date or naive datetime.
<DTn> = DT.utcnow() # Naive datetime from current UTC time.
<DTa> = DT.now(<tzinfo>) # Aware datetime from current tz time.
'<DTn>.time()'
, '<DTa>.time()'
or '<DTa>.timetz()'
.<tzinfo> = UTC # UTC timezone. London without DST.
<tzinfo> = tzlocal() # Local timezone. Also gettz().
<tzinfo> = gettz('<Continent>/<City>') # 'Continent/City_Name' timezone or None.
<DTa> = <DT>.astimezone(<tzinfo>) # Datetime, converted to the passed timezone.
<Ta/DTa> = <T/DT>.replace(tzinfo=<tzinfo>) # Unconverted object with a new timezone.
<D/T/DT> = D/T/DT.fromisoformat('<iso>') # Object from ISO string. Raises ValueError.
<DT> = DT.strptime(<str>, '<format>') # Datetime from str, according to format.
<D/DTn> = D/DT.fromordinal(<int>) # D/DTn from days since the Gregorian NYE 1.
<DTn> = DT.fromtimestamp(<real>) # Local time DTn from seconds since the Epoch.
<DTa> = DT.fromtimestamp(<real>, <tz.>) # Aware datetime from seconds since the Epoch.
'YYYY-MM-DD'
, 'HH:MM:SS.mmmuuu[±HH:MM]'
, or both separated by an arbitrary character. All parts following the hours are optional.'1970-01-01 00:00 UTC'
, '1970-01-01 01:00 CET'
, …<str> = <D/T/DT>.isoformat(sep='T') # Also `timespec='auto/hours/minutes/seconds/…'`.
<str> = <D/T/DT>.strftime('<format>') # Custom string representation.
<int> = <D/DT>.toordinal() # Days since Gregorian NYE 1, ignoring time and tz.
<float> = <DTn>.timestamp() # Seconds since the Epoch, from DTn in local tz.
<float> = <DTa>.timestamp() # Seconds since the Epoch, from aware datetime.
>>> dt = datetime.strptime('2015-05-14 23:39:00.00 +0200', '%Y-%m-%d %H:%M:%S.%f %z')
>>> dt.strftime("%A, %dth of %B '%y, %I:%M%p %Z")
"Thursday, 14th of May '15, 11:39PM UTC+02:00"
'%z'
accepts '±HH[:]MM'
and returns '±HHMM'
(or ''
if datetime is naive).'%a'
and '%b'
.<D/DT> = <D/DT> ± <TD> # Returned datetime can fall into missing hour.
<TD> = <D/DTn> - <D/DTn> # Returns the difference. Ignores time jumps.
<TD> = <DTa> - <DTa> # Ignores time jumps if they share tzinfo object.
<TD> = <TD> * <real> # Also: <TD> = abs(<TD>) and <TD> = <TD> ±% <TD>.
<float> = <TD> / <TD> # How many weeks/years there are in TD. Also //.
func(<positional_args>) # func(0, 0)
func(<keyword_args>) # func(x=0, y=0)
func(<positional_args>, <keyword_args>) # func(0, y=0)
def func(<nondefault_args>): ... # def func(x, y): ...
def func(<default_args>): ... # def func(x=0, y=0): ...
def func(<nondefault_args>, <default_args>): ... # def func(x, y=0): ...
Splat expands a collection into positional arguments, while splatty-splat expands a dictionary into keyword arguments.
args = (1, 2)
kwargs = {'x': 3, 'y': 4, 'z': 5}
func(*args, **kwargs)
func(1, 2, x=3, y=4, z=5)
Splat combines zero or more positional arguments into a tuple, while splatty-splat combines zero or more keyword arguments into a dictionary.
def add(*a):
return sum(a)
>>> add(1, 2, 3)
6
def f(*args): ... # f(1, 2, 3)
def f(x, *args): ... # f(1, 2, 3)
def f(*args, z): ... # f(1, 2, z=3)
def f(**kwargs): ... # f(x=1, y=2, z=3)
def f(x, **kwargs): ... # f(x=1, y=2, z=3) | f(1, y=2, z=3)
def f(*args, **kwargs): ... # f(x=1, y=2, z=3) | f(1, y=2, z=3) | f(1, 2, z=3) | f(1, 2, 3)
def f(x, *args, **kwargs): ... # f(x=1, y=2, z=3) | f(1, y=2, z=3) | f(1, 2, z=3) | f(1, 2, 3)
def f(*args, y, **kwargs): ... # f(x=1, y=2, z=3) | f(1, y=2, z=3)
def f(*, x, y, z): ... # f(x=1, y=2, z=3)
def f(x, *, y, z): ... # f(x=1, y=2, z=3) | f(1, y=2, z=3)
def f(x, y, *, z): ... # f(x=1, y=2, z=3) | f(1, y=2, z=3) | f(1, 2, z=3)
<list> = [*<coll.> [, ...]] # Or: list(<collection>) [+ ...]
<tuple> = (*<coll.>, [...]) # Or: tuple(<collection>) [+ ...]
<set> = {*<coll.> [, ...]} # Or: set(<collection>) [| ...]
<dict> = {**<dict> [, ...]} # Or: dict(**<dict> [, ...])
head, *body, tail = <coll.> # Head or tail can be omitted.
<func> = lambda: <return_value> # A single statement function.
<func> = lambda <arg_1>, <arg_2>: <return_value> # Also accepts default arguments.
<list> = [i+1 for i in range(10)] # Or: [1, 2, ..., 10]
<iter> = (i for i in range(10) if i > 5) # Or: iter([6, 7, 8, 9])
<set> = {i+5 for i in range(10)} # Or: {5, 6, ..., 14}
<dict> = {i: i*2 for i in range(10)} # Or: {0: 0, 1: 2, ..., 9: 18}
>>> [l+r for l in 'abc' for r in 'abc']
['aa', 'ab', 'ac', ..., 'cc']
from functools import reduce
<iter> = map(lambda x: x + 1, range(10)) # Or: iter([1, 2, ..., 10])
<iter> = filter(lambda x: x > 5, range(10)) # Or: iter([6, 7, 8, 9])
<obj> = reduce(lambda out, x: out + x, range(10)) # Or: 45
<bool> = any(<collection>) # Is `bool(<el>)` True for any element.
<bool> = all(<collection>) # Is True for all elements or empty.
<obj> = <exp> if <condition> else <exp> # Only one expression gets evaluated.
>>> [a if a else 'zero' for a in (0, 1, 2, 3)] # `any([0, '', [], None]) == False`
['zero', 1, 2, 3]
from collections import namedtuple
Point = namedtuple('Point', 'x y') # Creates a tuple's subclass.
point = Point(0, 0) # Returns its instance.
from enum import Enum
Direction = Enum('Direction', 'N E S W') # Creates an enum.
direction = Direction.N # Returns its member.
from dataclasses import make_dataclass
Player = make_dataclass('Player', ['loc', 'dir']) # Creates a class.
player = Player(point, direction) # Returns its instance.
import <module> # Imports a built-in or '<module>.py'.
import <package> # Imports a built-in or '<package>/__init__.py'.
import <package>.<module> # Imports a built-in or '<package>/<module>.py'.
'import <package>'
does not automatically provide access to the package's modules unless they are explicitly imported in its init script.We have/get a closure in Python when:
def get_multiplier(a):
def out(b):
return a * b
return out
>>> multiply_by_3 = get_multiplier(3)
>>> multiply_by_3(10)
30
'<function>.__closure__[0].cell_contents'
.from functools import partial
<function> = partial(<function> [, <arg_1>, <arg_2>, ...])
>>> def multiply(a, b):
... return a * b
>>> multiply_by_3 = partial(multiply, 3)
>>> multiply_by_3(10)
30
'defaultdict(<function>)'
, 'iter(<function>, to_exclusive)'
and dataclass's 'field(default_factory=<function>)'
.If variable is being assigned to anywhere in the scope, it is regarded as a local variable, unless it is declared as a 'global' or a 'nonlocal'.
def get_counter():
i = 0
def out():
nonlocal i
i += 1
return i
return out
>>> counter = get_counter()
>>> counter(), counter(), counter()
(1, 2, 3)
@decorator_name
def function_that_gets_passed_to_decorator():
...
Decorator that prints function's name every time the function is called.
from functools import wraps
def debug(func):
@wraps(func)
def out(*args, **kwargs):
print(func.__name__)
return func(*args, **kwargs)
return out
@debug
def add(x, y):
return x + y
'add.__name__'
would return 'out'
.Decorator that caches function's return values. All function's arguments must be hashable.
from functools import lru_cache
@lru_cache(maxsize=None)
def fib(n):
return n if n < 2 else fib(n-2) + fib(n-1)
'maxsize=None'
makes it unbounded.'sys.setrecursionlimit(<depth>)'
.A decorator that accepts arguments and returns a normal decorator that accepts a function.
from functools import wraps
def debug(print_result=False):
def decorator(func):
@wraps(func)
def out(*args, **kwargs):
result = func(*args, **kwargs)
print(func.__name__, result if print_result else '')
return result
return out
return decorator
@debug(print_result=True)
def add(x, y):
return x + y
'@debug'
to decorate the add() function would not work here, because debug would then receive the add() function as a 'print_result' argument. Decorators can however manually check if the argument they received is a function and act accordingly.class <name>:
def __init__(self, a):
self.a = a
def __repr__(self):
class_name = self.__class__.__name__
return f'{class_name}({self.a!r})'
def __str__(self):
return str(self.a)
@classmethod
def get_class_name(cls):
return cls.__name__
'@staticmethod'
do not receive 'self' nor 'cls' as their first arg.print(<el>)
f'{<el>}'
logging.warning(<el>)
csv.writer(<file>).writerow([<el>])
raise Exception(<el>)
print/str/repr([<el>])
print/str/repr({<el>: <el>})
f'{<el>!r}'
Z = dataclasses.make_dataclass('Z', ['a']); print/str/repr(Z(<el>))
>>> <el>
class <name>:
def __init__(self, a=None):
self.a = a
class Person:
def __init__(self, name, age):
self.name = name
self.age = age
class Employee(Person):
def __init__(self, name, age, staff_num):
super().__init__(name, age)
self.staff_num = staff_num
class A: pass
class B: pass
class C(A, B): pass
MRO determines the order in which parent classes are traversed when searching for a method or an attribute:
>>> C.mro()
[<class 'C'>, <class 'A'>, <class 'B'>, <class 'object'>]
Pythonic way of implementing getters and setters.
class Person:
@property
def name(self):
return ' '.join(self._name)
@name.setter
def name(self, value):
self._name = value.split()
>>> person = Person()
>>> person.name = '\t Guido van Rossum \n'
>>> person.name
'Guido van Rossum'
Decorator that automatically generates init(), repr() and eq() special methods.
from dataclasses import dataclass, field
@dataclass(order=False, frozen=False)
class <class_name>:
<attr_name>: <type>
<attr_name>: <type> = <default_value>
<attr_name>: list/dict/set = field(default_factory=list/dict/set)
'order=True'
and immutable with 'frozen=True'
.'<attr_name>: list = []'
would make a list that is shared among all instances. Its 'default_factory' argument can be any callable.'typing.Any'
.from dataclasses import make_dataclass
<class> = make_dataclass('<class_name>', <coll_of_attribute_names>)
<class> = make_dataclass('<class_name>', <coll_of_tuples>)
<tuple> = ('<attr_name>', <type> [, <default_value>])
import typing as tp, collections.abc as abc
<var_name>: list/set/abc.Iterable/abc.Sequence/tp.Optional[<type>] [= <obj>]
<var_name>: dict/tuple/tp.Union[<type>, ...] [= <obj>]
def func(<arg_name>: <type> [= <obj>]) -> <type>: ...
Mechanism that restricts objects to attributes listed in 'slots' and significantly reduces their memory footprint.
class MyClassWithSlots:
__slots__ = ['a']
def __init__(self):
self.a = 1
from copy import copy, deepcopy
<object> = copy(<object>)
<object> = deepcopy(<object>)
A duck type is an implicit type that prescribes a set of special methods. Any object that has those methods defined is considered a member of that duck type.
'id(self) == id(other)'
, which is the same as 'self is other'
.class MyComparable:
def __init__(self, a):
self.a = a
def __eq__(self, other):
if isinstance(other, type(self)):
return self.a == other.a
return NotImplemented
'id(self)'
will not do.class MyHashable:
def __init__(self, a):
self._a = a
@property
def a(self):
return self._a
def __eq__(self, other):
if isinstance(other, type(self)):
return self.a == other.a
return NotImplemented
def __hash__(self):
return hash(self.a)
from functools import total_ordering
@total_ordering
class MySortable:
def __init__(self, a):
self.a = a
def __eq__(self, other):
if isinstance(other, type(self)):
return self.a == other.a
return NotImplemented
def __lt__(self, other):
if isinstance(other, type(self)):
return self.a < other.a
return NotImplemented
class Counter:
def __init__(self):
self.i = 0
def __next__(self):
self.i += 1
return self.i
def __iter__(self):
return self
>>> counter = Counter()
>>> next(counter), next(counter), next(counter)
(1, 2, 3)
'<function>'
as an argument, it actually means '<callable>'
.class Counter:
def __init__(self):
self.i = 0
def __call__(self):
self.i += 1
return self.i
>>> counter = Counter()
>>> counter(), counter(), counter()
(1, 2, 3)
class MyOpen:
def __init__(self, filename):
self.filename = filename
def __enter__(self):
self.file = open(self.filename)
return self.file
def __exit__(self, exc_type, exception, traceback):
self.file.close()
>>> with open('test.txt', 'w') as file:
... file.write('Hello World!')
>>> with MyOpen('test.txt') as file:
... print(file.read())
Hello World!
class MyIterable:
def __init__(self, a):
self.a = a
def __iter__(self):
return iter(self.a)
def __contains__(self, el):
return el in self.a
>>> obj = MyIterable([1, 2, 3])
>>> [el for el in obj]
[1, 2, 3]
>>> 1 in obj
True
'<iterable>'
when it uses '<collection>'
.class MyCollection:
def __init__(self, a):
self.a = a
def __iter__(self):
return iter(self.a)
def __contains__(self, el):
return el in self.a
def __len__(self):
return len(self.a)
class MySequence:
def __init__(self, a):
self.a = a
def __iter__(self):
return iter(self.a)
def __contains__(self, el):
return el in self.a
def __len__(self):
return len(self.a)
def __getitem__(self, i):
return self.a[i]
def __reversed__(self):
return reversed(self.a)
'abc.Iterable'
and 'abc.Collection'
, it is not a duck type. That is why 'issubclass(MySequence, abc.Sequence)'
would return False even if MySequence had all the methods defined. It however recognizes list, tuple, range, str, bytes, bytearray, array, memoryview and deque, because they are registered as its virtual subclasses.from collections import abc
class MyAbcSequence(abc.Sequence):
def __init__(self, a):
self.a = a
def __len__(self):
return len(self.a)
def __getitem__(self, i):
return self.a[i]
┏━━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━━━┓
┃ │ Iterable │ Collection │ Sequence │ abc.Sequence ┃
┠────────────┼────────────┼────────────┼────────────┼──────────────┨
┃ iter() │ ! │ ! │ ✓ │ ✓ ┃
┃ contains() │ ✓ │ ✓ │ ✓ │ ✓ ┃
┃ len() │ │ ! │ ! │ ! ┃
┃ getitem() │ │ │ ! │ ! ┃
┃ reversed() │ │ │ ✓ │ ✓ ┃
┃ index() │ │ │ │ ✓ ┃
┃ count() │ │ │ │ ✓ ┃
┗━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━━━┛
'<abc>.__abstractmethods__'
.from enum import Enum, auto
class <enum_name>(Enum):
<member_name> = auto()
<member_name> = <value>
<member_name> = <value>, <value>
<member> = <enum>.<member_name> # Returns a member.
<member> = <enum>['<member_name>'] # Returns a member. Raises KeyError.
<member> = <enum>(<value>) # Returns a member. Raises ValueError.
<str> = <member>.name # Returns member's name.
<obj> = <member>.value # Returns member's value.
<list> = list(<enum>) # Returns enum's members.
<list> = [a.name for a in <enum>] # Returns enum's member names.
<list> = [a.value for a in <enum>] # Returns enum's member values.
<member> = random.choice(list(<enum>)) # Returns a random member.
def get_next_member(member):
members = list(type(member))
index = members.index(member) + 1
return members[index % len(members)]
Cutlery = Enum('Cutlery', 'FORK KNIFE SPOON')
Cutlery = Enum('Cutlery', ['FORK', 'KNIFE', 'SPOON'])
Cutlery = Enum('Cutlery', {'FORK': 1, 'KNIFE': 2, 'SPOON': 3})
from functools import partial
LogicOp = Enum('LogicOp', {'AND': partial(lambda l, r: l and r),
'OR': partial(lambda l, r: l or r)})
try:
<code>
except <exception>:
<code>
try:
<code_1>
except <exception_a>:
<code_2_a>
except <exception_b>:
<code_2_b>
else:
<code_2_c>
finally:
<code_3>
'else'
block will only be executed if 'try'
block had no exceptions.'finally'
block will always be executed (unless a signal is received).'signal.signal(signal_number, <func>)'
.except <exception>: ...
except <exception> as <name>: ...
except (<exception>, [...]): ...
except (<exception>, [...]) as <name>: ...
'traceback.print_exc()'
to print the error message to stderr.'print(<name>)'
to print just the cause of the exception (its arguments).'logging.exception(<message>)'
to log the passed message, followed by the full error message of the caught exception.raise <exception>
raise <exception>()
raise <exception>(<el> [, ...])
except <exception> [as <name>]:
...
raise
arguments = <name>.args
exc_type = <name>.__class__
filename = <name>.__traceback__.tb_frame.f_code.co_filename
func_name = <name>.__traceback__.tb_frame.f_code.co_name
line = linecache.getline(filename, <name>.__traceback__.tb_lineno)
trace_str = ''.join(traceback.format_tb(<name>.__traceback__))
error_msg = ''.join(traceback.format_exception(exc_type, <name>, <name>.__traceback__))
BaseException
├── SystemExit # Raised by the sys.exit() function.
├── KeyboardInterrupt # Raised when the user hits the interrupt key (ctrl-c).
└── Exception # User-defined exceptions should be derived from this class.
├── ArithmeticError # Base class for arithmetic errors such as ZeroDivisionError.
├── AssertionError # Raised by `assert <exp>` if expression returns false value.
├── AttributeError # Raised when object doesn't have requested attribute/method.
├── EOFError # Raised by input() when it hits an end-of-file condition.
├── LookupError # Base class for errors when a collection can't find an item.
│ ├── IndexError # Raised when a sequence index is out of range.
│ └── KeyError # Raised when a dictionary key or set element is missing.
├── MemoryError # Out of memory. Could be too late to start deleting vars.
├── NameError # Raised when nonexistent name (variable/func/class) is used.
│ └── UnboundLocalError # Raised when local name is used before it's being defined.
├── OSError # Errors such as FileExistsError/PermissionError (see #Open).
│ └── ConnectionError # Errors such as BrokenPipeError/ConnectionAbortedError.
├── RuntimeError # Raised by errors that don't fall into other categories.
│ ├── NotImplementedErr # Can be raised by abstract methods or by unfinished code.
│ └── RecursionError # Raised when the maximum recursion depth is exceeded.
├── StopIteration # Raised by next() when run on an empty iterator.
├── TypeError # Raised when an argument is of the wrong type.
└── ValueError # When argument has the right type but inappropriate value.
┏━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━┓
┃ │ List │ Set │ Dict ┃
┠───────────┼────────────┼────────────┼────────────┨
┃ getitem() │ IndexError │ │ KeyError ┃
┃ pop() │ IndexError │ KeyError │ KeyError ┃
┃ remove() │ ValueError │ KeyError │ ┃
┃ index() │ ValueError │ │ ┃
┗━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━┛
raise TypeError('Argument is of the wrong type!')
raise ValueError('Argument has the right type but an inappropriate value!')
raise RuntimeError('None of above!')
class MyError(Exception): pass
class MyInputError(MyError): pass
Exits the interpreter by raising SystemExit exception.
import sys
sys.exit() # Exits with exit code 0 (success).
sys.exit(<el>) # Prints to stderr and exits with 1.
sys.exit(<int>) # Exits with passed exit code.
print(<el_1>, ..., sep=' ', end='\n', file=sys.stdout, flush=False)
'file=sys.stderr'
for messages about errors.'flush=True'
to forcibly flush the stream.from pprint import pprint
pprint(<collection>, width=80, depth=None, compact=False, sort_dicts=True)
import sys
scripts_path = sys.argv[0]
arguments = sys.argv[1:]
from argparse import ArgumentParser, FileType
p = ArgumentParser(description=<str>)
p.add_argument('-<short_name>', '--<name>', action='store_true') # Flag.
p.add_argument('-<short_name>', '--<name>', type=<type>) # Option.
p.add_argument('<name>', type=<type>, nargs=1) # First argument.
p.add_argument('<name>', type=<type>, nargs='+') # Remaining arguments.
p.add_argument('<name>', type=<type>, nargs='*') # Optional arguments.
args = p.parse_args() # Exits on error.
value = args.<name>
'help=<str>'
to set argument description that will be displayed in help message.'default=<el>'
to set the default value.'type=FileType(<mode>)'
for files. Accepts 'encoding', but 'newline' is None.Opens the file and returns a corresponding file object.
<file> = open(<path>, mode='r', encoding=None, newline=None)
'encoding=None'
means that the default encoding is used, which is platform dependent. Best practice is to use 'encoding="utf-8"'
whenever possible.'newline=None'
means all different end of line combinations are converted to '\n' on read, while on write all '\n' characters are converted to system's default line separator.'newline=""'
means no conversions take place, but input is still broken into chunks by readline() and readlines() on every '\n', '\r' and '\r\n'.'r'
- Read (default).'w'
- Write (truncate).'x'
- Write or fail if the file already exists.'a'
- Append.'w+'
- Read and write (truncate).'r+'
- Read and write from the start.'a+'
- Read and write from the end.'t'
- Text mode (default).'b'
- Binary mode ('br'
, 'bw'
, 'bx'
, …).'FileNotFoundError'
can be raised when reading with 'r'
or 'r+'
.'FileExistsError'
can be raised when writing with 'x'
.'IsADirectoryError'
and 'PermissionError'
can be raised by any.'OSError'
is the parent class of all listed exceptions.<file>.seek(0) # Moves to the start of the file.
<file>.seek(offset) # Moves 'offset' chars/bytes from the start.
<file>.seek(0, 2) # Moves to the end of the file.
<bin_file>.seek(±offset, <anchor>) # Anchor: 0 start, 1 current position, 2 end.
<str/bytes> = <file>.read(size=-1) # Reads 'size' chars/bytes or until EOF.
<str/bytes> = <file>.readline() # Returns a line or empty string/bytes on EOF.
<list> = <file>.readlines() # Returns a list of remaining lines.
<str/bytes> = next(<file>) # Returns a line using buffer. Do not mix.
<file>.write(<str/bytes>) # Writes a string or bytes object.
<file>.writelines(<collection>) # Writes a coll. of strings or bytes objects.
<file>.flush() # Flushes write buffer. Runs every 4096/8192 B.
def read_file(filename):
with open(filename, encoding='utf-8') as file:
return file.readlines()
def write_to_file(filename, text):
with open(filename, 'w', encoding='utf-8') as file:
file.write(text)
import os, glob
from pathlib import Path
<str> = os.getcwd() # Returns the current working directory.
<str> = os.path.join(<path>, ...) # Joins two or more pathname components.
<str> = os.path.realpath(<path>) # Resolves symlinks and calls path.abspath().
<str> = os.path.basename(<path>) # Returns final component of the path.
<str> = os.path.dirname(<path>) # Returns path without the final component.
<tup.> = os.path.splitext(<path>) # Splits on last period of the final component.
<list> = os.listdir(path='.') # Returns filenames located at the path.
<list> = glob.glob('<pattern>') # Returns paths matching the wildcard pattern.
<bool> = os.path.exists(<path>) # Or: <Path>.exists()
<bool> = os.path.isfile(<path>) # Or: <DirEntry/Path>.is_file()
<bool> = os.path.isdir(<path>) # Or: <DirEntry/Path>.is_dir()
<stat> = os.stat(<path>) # Or: <DirEntry/Path>.stat()
<real> = <stat>.st_mtime/st_size/… # Modification time, size in bytes, ...
Unlike listdir(), scandir() returns DirEntry objects that cache isfile, isdir and on Windows also stat information, thus significantly increasing the performance of code that requires it.
<iter> = os.scandir(path='.') # Returns DirEntry objects located at the path.
<str> = <DirEntry>.path # Returns the whole path as a string.
<str> = <DirEntry>.name # Returns final component as a string.
<file> = open(<DirEntry>) # Opens the file and returns a file object.
<Path> = Path(<path> [, ...]) # Accepts strings, Paths and DirEntry objects.
<Path> = <path> / <path> [/ ...] # First or second path must be a Path object.
<Path> = <Path>.resolve() # Resolves symlinks and calls <Path>.absolute().
<Path> = Path() # Returns relative cwd. Also Path('.').
<Path> = Path.cwd() # Returns absolute cwd. Also Path().resolve().
<Path> = Path.home() # Returns user's home directory (absolute).
<Path> = Path(__file__).resolve() # Returns script's path if cwd wasn't changed.
<Path> = <Path>.parent # Returns Path without the final component.
<str> = <Path>.name # Returns final component as a string.
<str> = <Path>.stem # Returns final component without extension.
<str> = <Path>.suffix # Returns final component's extension.
<tup.> = <Path>.parts # Returns all components as strings.
<iter> = <Path>.iterdir() # Returns directory contents as Path objects.
<iter> = <Path>.glob('<pattern>') # Returns Paths matching the wildcard pattern.
<str> = str(<Path>) # Returns path as a string.
<file> = open(<Path>) # Also <Path>.read/write_text/bytes().
import os, shutil, subprocess
os.chdir(<path>) # Changes the current working directory.
os.mkdir(<path>, mode=0o777) # Creates a directory. Permissions are in octal.
os.makedirs(<path>, mode=0o777) # Creates all path's dirs. Also `exist_ok=False`.
shutil.copy(from, to) # Copies the file. 'to' can exist or be a dir.
shutil.copy2(from, to) # Also copies creation and modification time.
shutil.copytree(from, to) # Copies the directory. 'to' must not exist.
os.rename(from, to) # Renames/moves the file or directory.
os.replace(from, to) # Same, but overwrites file 'to' even on Windows.
shutil.move(from, to) # Rename() that moves into 'to' if it's a dir.
os.remove(<path>) # Deletes the file.
os.rmdir(<path>) # Deletes the empty directory.
shutil.rmtree(<path>) # Deletes the directory.
<pipe> = os.popen('<command>') # Executes command in sh/cmd. Returns its stdout pipe.
<str> = <pipe>.read(size=-1) # Reads 'size' chars or until EOF. Also readline/s().
<int> = <pipe>.close() # Closes the pipe. Returns None on success (returncode 0).
>>> subprocess.run('bc', input='1 + 1\n', capture_output=True, text=True)
CompletedProcess(args='bc', returncode=0, stdout='2\n', stderr='')
>>> from shlex import split
>>> os.popen('echo 1 + 1 > test.in')
>>> subprocess.run(split('bc -s'), stdin=open('test.in'), stdout=open('test.out', 'w'))
CompletedProcess(args=['bc', '-s'], returncode=0)
>>> open('test.out').read()
'2\n'
Text file format for storing collections of strings and numbers.
import json
<str> = json.dumps(<object>) # Converts object to JSON string.
<object> = json.loads(<str>) # Converts JSON string to object.
def read_json_file(filename):
with open(filename, encoding='utf-8') as file:
return json.load(file)
def write_to_json_file(filename, an_object):
with open(filename, 'w', encoding='utf-8') as file:
json.dump(an_object, file, ensure_ascii=False, indent=2)
Binary file format for storing Python objects.
import pickle
<bytes> = pickle.dumps(<object>) # Converts object to bytes object.
<object> = pickle.loads(<bytes>) # Converts bytes object to object.
def read_pickle_file(filename):
with open(filename, 'rb') as file:
return pickle.load(file)
def write_to_pickle_file(filename, an_object):
with open(filename, 'wb') as file:
pickle.dump(an_object, file)
<reader> = csv.reader(<file>) # Also: `dialect='excel', delimiter=','`.
<list> = next(<reader>) # Returns next row as a list of strings.
<list> = list(<reader>) # Returns a list of remaining rows.
'newline=""'
argument, or newlines embedded inside quoted fields will not be interpreted correctly!<writer> = csv.writer(<file>) # Also: `dialect='excel', delimiter=','`.
<writer>.writerow(<collection>) # Encodes objects using `str(<el>)`.
<writer>.writerows(<coll_of_coll>) # Appends multiple rows.
'newline=""'
argument, or '\r' will be added in front of every '\n' on platforms that use '\r\n' line endings!'dialect'
- Master parameter that sets the default values. String or a 'csv.Dialect' object.'delimiter'
- A one-character string used to separate fields.'quotechar'
- Character for quoting fields that contain special characters.'doublequote'
- Whether quotechars inside fields are/get doubled or escaped.'skipinitialspace'
- Is space character at the start of the field stripped by the reader.'lineterminator'
- How writer terminates rows. Reader is hardcoded to '\n', '\r', '\r\n'.'quoting'
- 0: As necessary, 1: All, 2: All but numbers which are read as floats, 3: None.'escapechar'
- Character for escaping quotechars if doublequote is False.┏━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━┓
┃ │ excel │ excel-tab │ unix ┃
┠──────────────────┼──────────────┼──────────────┼──────────────┨
┃ delimiter │ ',' │ '\t' │ ',' ┃
┃ quotechar │ '"' │ '"' │ '"' ┃
┃ doublequote │ True │ True │ True ┃
┃ skipinitialspace │ False │ False │ False ┃
┃ lineterminator │ '\r\n' │ '\r\n' │ '\n' ┃
┃ quoting │ 0 │ 0 │ 1 ┃
┃ escapechar │ None │ None │ None ┃
┗━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━┛
def read_csv_file(filename, dialect='excel'):
with open(filename, encoding='utf-8', newline='') as file:
return list(csv.reader(file, dialect))
def write_to_csv_file(filename, rows, dialect='excel'):
with open(filename, 'w', encoding='utf-8', newline='') as file:
writer = csv.writer(file, dialect)
writer.writerows(rows)
A server-less database engine that stores each database into a separate file.
import sqlite3
<conn> = sqlite3.connect(<path>) # Opens existing or new file. Also ':memory:'.
<conn>.close() # Closes the connection.
<cursor> = <conn>.execute('<query>') # Can raise a subclass of sqlite3.Error.
<tuple> = <cursor>.fetchone() # Returns next row. Also next(<cursor>).
<list> = <cursor>.fetchall() # Returns remaining rows. Also list(<cursor>).
<conn>.execute('<query>') # Can raise a subclass of sqlite3.Error.
<conn>.commit() # Saves all changes since the last commit.
<conn>.rollback() # Discards all changes since the last commit.
with <conn>: # Exits the block with commit() or rollback(),
<conn>.execute('<query>') # depending on whether any exception occurred.
<conn>.execute('<query>', <list/tuple>) # Replaces '?'s in query with values.
<conn>.execute('<query>', <dict/namedtuple>) # Replaces ':<key>'s with values.
<conn>.executemany('<query>', <coll_of_above>) # Runs execute() multiple times.
Values are not actually saved in this example because 'conn.commit()'
is omitted!
>>> conn = sqlite3.connect('test.db')
>>> conn.execute('CREATE TABLE person (person_id INTEGER PRIMARY KEY, name, height)')
>>> conn.execute('INSERT INTO person VALUES (NULL, ?, ?)', ('Jean-Luc', 187)).lastrowid
1
>>> conn.execute('SELECT * FROM person').fetchall()
[(1, 'Jean-Luc', 187)]
# $ pip3 install sqlalchemy
from sqlalchemy import create_engine, text
<engine> = create_engine('<url>') # Url: 'dialect://user:password@host/dbname'.
<conn> = <engine>.connect() # Creates a connection. Also <conn>.close().
<cursor> = <conn>.execute(text('<query>'), …) # Replaces ':<key>'s with keyword arguments.
with <conn>.begin(): ... # Exits the block with commit or rollback.
┏━━━━━━━━━━━━┯━━━━━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Dialect │ pip3 install │ import │ Dependencies ┃
┠────────────┼──────────────┼──────────┼──────────────────────────────────┨
┃ mysql │ mysqlclient │ MySQLdb │ www.pypi.org/project/mysqlclient ┃
┃ postgresql │ psycopg2 │ psycopg2 │ www.pypi.org/project/psycopg2 ┃
┃ mssql │ pyodbc │ pyodbc │ www.pypi.org/project/pyodbc ┃
┃ oracle │ oracledb │ oracledb │ www.pypi.org/project/oracledb ┃
┗━━━━━━━━━━━━┷━━━━━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛
Bytes object is an immutable sequence of single bytes. Mutable version is called bytearray.
<bytes> = b'<str>' # Only accepts ASCII characters and \x00-\xff.
<int> = <bytes>[<index>] # Returns an int in range from 0 to 255.
<bytes> = <bytes>[<slice>] # Returns bytes even if it has only one element.
<bytes> = <bytes>.join(<coll_of_bytes>) # Joins elements using bytes as a separator.
<bytes> = bytes(<coll_of_ints>) # Ints must be in range from 0 to 255.
<bytes> = bytes(<str>, 'utf-8') # Or: <str>.encode('utf-8')
<bytes> = <int>.to_bytes(n_bytes, …) # `byteorder='big/little', signed=False`.
<bytes> = bytes.fromhex('<hex>') # Hex pairs can be separated by whitespaces.
<list> = list(<bytes>) # Returns ints in range from 0 to 255.
<str> = str(<bytes>, 'utf-8') # Or: <bytes>.decode('utf-8')
<int> = int.from_bytes(<bytes>, …) # `byteorder='big/little', signed=False`.
'<hex>' = <bytes>.hex() # Returns hex pairs. Accepts `sep=<str>`.
def read_bytes(filename):
with open(filename, 'rb') as file:
return file.read()
def write_bytes(filename, bytes_obj):
with open(filename, 'wb') as file:
file.write(bytes_obj)
from struct import pack, unpack
<bytes> = pack('<format>', <el_1> [, ...]) # Packages arguments or raises struct.error.
<tuple> = unpack('<format>', <bytes>) # Use iter_unpack() for iterator of tuples.
>>> pack('>hhl', 1, 2, 3)
b'\x00\x01\x00\x02\x00\x00\x00\x03'
>>> unpack('>hhl', b'\x00\x01\x00\x02\x00\x00\x00\x03')
(1, 2, 3)
'='
- System's byte order (usually little-endian).'<'
- Little-endian.'>'
- Big-endian (also '!'
).'c'
- A bytes object with a single element. For pad byte use 'x'
.'<n>s'
- A bytes object with n elements.'b'
- char (1/1)'h'
- short (2/2)'i'
- int (2/4)'l'
- long (4/4)'q'
- long long (8/8)'f'
- float (4/4)'d'
- double (8/8)List that can only hold numbers of a predefined type. Available types and their minimum sizes in bytes are listed above. Sizes and byte order are always determined by the system, however bytes of each element can be swapped with byteswap() method.
from array import array
<array> = array('<typecode>', <collection>) # Array from collection of numbers.
<array> = array('<typecode>', <bytes>) # Array from bytes object.
<array> = array('<typecode>', <array>) # Treats array as a sequence of numbers.
<bytes> = bytes(<array>) # Or: <array>.tobytes()
<file>.write(<array>) # Writes array to the binary file.
<mview> = memoryview(<bytes/bytearray/array>) # Immutable if bytes, else mutable.
<real> = <mview>[<index>] # Returns an int or a float.
<mview> = <mview>[<slice>] # Mview with rearranged elements.
<mview> = <mview>.cast('<typecode>') # Casts memoryview to the new format.
<mview>.release() # Releases the object's memory buffer.
<bytes> = bytes(<mview>) # Returns a new bytes object.
<bytes> = <bytes>.join(<coll_of_mviews>) # Joins mviews using bytes object as sep.
<array> = array('<typecode>', <mview>) # Treats mview as a sequence of numbers.
<file>.write(<mview>) # Writes mview to the binary file.
<list> = list(<mview>) # Returns a list of ints or floats.
<str> = str(<mview>, 'utf-8') # Treats mview as a bytes object.
<int> = int.from_bytes(<mview>, …) # `byteorder='big/little', signed=False`.
'<hex>' = <mview>.hex() # Treats mview as a bytes object.
A thread-safe list with efficient appends and pops from either side. Pronounced "deck".
from collections import deque
<deque> = deque(<collection>, maxlen=None)
<deque>.appendleft(<el>) # Opposite element is dropped if full.
<deque>.extendleft(<collection>) # Collection gets reversed.
<el> = <deque>.popleft() # Raises IndexError if empty.
<deque>.rotate(n=1) # Rotates elements to the right.
from threading import Thread, RLock, Semaphore, Event, Barrier
from concurrent.futures import ThreadPoolExecutor, as_completed
<Thread> = Thread(target=<function>) # Use `args=<collection>` to set the arguments.
<Thread>.start() # Starts the thread.
<bool> = <Thread>.is_alive() # Checks if the thread has finished executing.
<Thread>.join() # Waits for the thread to finish.
'kwargs=<dict>'
to pass keyword arguments to the function.'daemon=True'
, or the program will not be able to exit while the thread is alive.<lock> = RLock() # Lock that can only be released by acquirer.
<lock>.acquire() # Waits for the lock to be available.
<lock>.release() # Makes the lock available again.
with <lock>: # Enters the block by calling acquire() and
... # exits it with release(), even on error.
<Semaphore> = Semaphore(value=1) # Lock that can be acquired by 'value' threads.
<Event> = Event() # Method wait() blocks until set() is called.
<Barrier> = Barrier(n_times) # Wait() blocks until it's called n_times.
<Queue> = queue.Queue(maxsize=0) # A thread-safe FIFO queue. Also LifoQueue.
<Queue>.put(<el>) # Blocks until queue stops being full.
<Queue>.put_nowait(<el>) # Raises queue.Full exception if full.
<el> = <Queue>.get() # Blocks until queue stops being empty.
<el> = <Queue>.get_nowait() # Raises queue.Empty exception if empty.
<Exec> = ThreadPoolExecutor(max_workers=None) # Or: `with ThreadPoolExecutor() as <name>: …`
<iter> = <Exec>.map(<func>, <args_1>, ...) # Multithreaded and non-lazy map(). Keeps order.
<Futr> = <Exec>.submit(<func>, <arg_1>, ...) # Creates a thread and returns its Future obj.
<Exec>.shutdown(wait=True) # Blocks until all threads finish executing.
<bool> = <Future>.done() # Checks if the thread has finished executing.
<obj> = <Future>.result(timeout=None) # Waits for thread to finish and returns result.
<bool> = <Future>.cancel() # Returns False if thread is already running.
<iter> = as_completed(<coll_of_Futures>) # Each Future is yielded as it completes.
Module of functions that provide the functionality of operators.
import operator as op
<obj> = op.add/sub/mul/truediv/floordiv/mod(<obj>, <obj>) # +, -, *, /, //, %
<int/set> = op.and_/or_/xor(<int/set>, <int/set>) # &, |, ^
<bool> = op.eq/ne/lt/le/gt/ge(<sortable>, <sortable>) # ==, !=, <, <=, >, >=
<func> = op.itemgetter/attrgetter/methodcaller(<obj> [, ...]) # [index/key], .name, .name()
elementwise_sum = map(op.add, list_a, list_b)
sorted_by_second = sorted(<collection>, key=op.itemgetter(1))
sorted_by_both = sorted(<collection>, key=op.itemgetter(1, 0))
product_of_elems = functools.reduce(op.mul, <collection>)
union_of_sets = functools.reduce(op.or_, <coll_of_sets>)
first_element = op.methodcaller('pop', 0)(<list>)
'<bool> = <bool> &|^ <bool>'
and '<int> = <bool> &|^ <int>'
.Inspecting code at runtime.
<list> = dir() # Names of local variables (incl. functions).
<dict> = vars() # Dict of local variables. Also locals().
<dict> = globals() # Dict of global variables.
<list> = dir(<object>) # Names of object's attributes (incl. methods).
<dict> = vars(<object>) # Dict of writable attributes. Also <obj>.__dict__.
<bool> = hasattr(<object>, '<attr_name>') # Checks if getattr() raises an AttributeError.
value = getattr(<object>, '<attr_name>') # Raises AttributeError if attribute is missing.
setattr(<object>, '<attr_name>', value) # Only works on objects with '__dict__' attribute.
delattr(<object>, '<attr_name>') # Same. Also `del <object>.<attr_name>`.
<Sig> = inspect.signature(<function>) # Function's Signature object.
<dict> = <Sig>.parameters # Dict of Parameter objects.
<memb> = <Param>.kind # Member of ParameterKind enum.
<obj> = <Param>.default # Default value or Parameter.empty.
<type> = <Param>.annotation # Type or Parameter.empty.
Code that generates code.
Type is the root class. If only passed an object it returns its type (class). Otherwise it creates a new class.
<class> = type('<class_name>', <tuple_of_parents>, <dict_of_class_attributes>)
>>> Z = type('Z', (), {'a': 'abcde', 'b': 12345})
>>> z = Z()
A class that creates classes.
def my_meta_class(name, parents, attrs):
attrs['a'] = 'abcde'
return type(name, parents, attrs)
class MyMetaClass(type):
def __new__(cls, name, parents, attrs):
attrs['a'] = 'abcde'
return type.__new__(cls, name, parents, attrs)
def __new__(cls): return super().__new__(cls)
).Right before a class is created it checks if it has the 'metaclass' attribute defined. If not, it recursively checks if any of his parents has it defined and eventually comes to type().
class MyClass(metaclass=MyMetaClass):
b = 12345
>>> MyClass.a, MyClass.b
('abcde', 12345)
type(MyClass) == MyMetaClass # MyClass is an instance of MyMetaClass.
type(MyMetaClass) == type # MyMetaClass is an instance of type.
┏━━━━━━━━━━━━━┯━━━━━━━━━━━━━┓
┃ Classes │ Metaclasses ┃
┠─────────────┼─────────────┨
┃ MyClass ←──╴MyMetaClass ┃
┃ │ ↑ ┃
┃ object ←─────╴type ←╮ ┃
┃ │ │ ╰──╯ ┃
┃ str ←─────────╯ ┃
┗━━━━━━━━━━━━━┷━━━━━━━━━━━━━┛
MyClass.__base__ == object # MyClass is a subclass of object.
MyMetaClass.__base__ == type # MyMetaClass is a subclass of type.
┏━━━━━━━━━━━━━┯━━━━━━━━━━━━━┓
┃ Classes │ Metaclasses ┃
┠─────────────┼─────────────┨
┃ MyClass │ MyMetaClass ┃
┃ ↑ │ ↑ ┃
┃ object╶─────→ type ┃
┃ ↓ │ ┃
┃ str │ ┃
┗━━━━━━━━━━━━━┷━━━━━━━━━━━━━┛
>>> from ast import literal_eval
>>> literal_eval('[1, 2, 3]')
[1, 2, 3]
>>> literal_eval('1 + 2')
ValueError: malformed node or string
'async'
and its call with 'await'
.'asyncio.run(<coroutine>)'
is the main entry point for asynchronous programs.import asyncio, collections, curses, curses.textpad, enum, random
P = collections.namedtuple('P', 'x y') # Position
D = enum.Enum('D', 'n e s w') # Direction
W, H = 15, 7 # Width, Height
def main(screen):
curses.curs_set(0) # Makes cursor invisible.
screen.nodelay(True) # Makes getch() non-blocking.
asyncio.run(main_coroutine(screen)) # Starts running asyncio code.
async def main_coroutine(screen):
moves = asyncio.Queue()
state = {'*': P(0, 0), **{id_: P(W//2, H//2) for id_ in range(10)}}
ai = [random_controller(id_, moves) for id_ in range(10)]
mvc = [human_controller(screen, moves), model(moves, state), view(state, screen)]
tasks = [asyncio.create_task(cor) for cor in ai + mvc]
await asyncio.wait(tasks, return_when=asyncio.FIRST_COMPLETED)
async def random_controller(id_, moves):
while True:
d = random.choice(list(D))
moves.put_nowait((id_, d))
await asyncio.sleep(random.triangular(0.01, 0.65))
async def human_controller(screen, moves):
while True:
key_mappings = {258: D.s, 259: D.n, 260: D.w, 261: D.e}
if d := key_mappings.get(screen.getch()):
moves.put_nowait(('*', d))
await asyncio.sleep(0.005)
async def model(moves, state):
while state['*'] not in (state[id_] for id_ in range(10)):
id_, d = await moves.get()
x, y = state[id_]
deltas = {D.n: P(0, -1), D.e: P(1, 0), D.s: P(0, 1), D.w: P(-1, 0)}
state[id_] = P((x + deltas[d].x) % W, (y + deltas[d].y) % H)
async def view(state, screen):
offset = P(curses.COLS//2 - W//2, curses.LINES//2 - H//2)
while True:
screen.erase()
curses.textpad.rectangle(screen, offset.y-1, offset.x-1, offset.y+H, offset.x+W)
for id_, p in state.items():
screen.addstr(offset.y + (p.y - state['*'].y + H//2) % H,
offset.x + (p.x - state['*'].x + W//2) % W, str(id_))
screen.refresh()
await asyncio.sleep(0.005)
if __name__ == '__main__':
curses.wrapper(main)
# $ pip3 install tqdm
>>> from tqdm import tqdm
>>> from time import sleep
>>> for el in tqdm([1, 2, 3], desc='Processing'):
... sleep(1)
Processing: 100%|████████████████████| 3/3 [00:03<00:00, 1.00s/it]
# $ pip3 install matplotlib
import matplotlib.pyplot as plt
plt.plot/bar/scatter(x_data, y_data [, label=<str>]) # Or: plt.plot(y_data)
plt.legend() # Adds a legend.
plt.savefig(<path>) # Saves the figure.
plt.show() # Displays the figure.
plt.clf() # Clears the figure.
# $ pip3 install tabulate
import csv, tabulate
with open('test.csv', encoding='utf-8', newline='') as file:
rows = csv.reader(file)
header = next(rows)
table = tabulate.tabulate(rows, header)
print(table)
import curses, curses.ascii, os
from curses import A_REVERSE, KEY_DOWN, KEY_UP, KEY_LEFT, KEY_RIGHT, KEY_ENTER
def main(screen):
ch, first, selected, paths = 0, 0, 0, os.listdir()
while ch != curses.ascii.ESC:
height, width = screen.getmaxyx()
screen.erase()
for y, filename in enumerate(paths[first : first+height]):
color = A_REVERSE if filename == paths[selected] else 0
screen.addstr(y, 0, filename[:width-1], color)
ch = screen.getch()
selected += (ch == KEY_DOWN) - (ch == KEY_UP)
selected = max(0, min(len(paths)-1, selected))
first += (selected >= first + height) - (selected < first)
if ch in [KEY_LEFT, KEY_RIGHT, KEY_ENTER, ord('\n'), ord('\r')]:
new_dir = '..' if ch == KEY_LEFT else paths[selected]
if os.path.isdir(new_dir):
os.chdir(new_dir)
first, selected, paths = 0, 0, os.listdir()
if __name__ == '__main__':
curses.wrapper(main)
import logging
logging.basicConfig(filename=<path>) # Configures the root logger.
logging.debug/info/warning/error/critical(<str>) # Logs to the root logger.
<Logger> = logging.getLogger(__name__) # Logger named after the module.
<Logger>.<level>(<str>) # Messages propagate to the root logger.
<Logger>.exception(<str>) # Calls error() with caught exception.
logging.basicConfig(
filename=None, # Logs to console by default.
format='%(levelname)s:%(name)s:%(message)s', # Add `%(asctime)s` for datetime.
level=logging.WARNING, # Drops messages with lower priority.
handlers=[logging.StreamHandler()] # Uses FileHandler if filename is set.
)
<Formatter> = logging.Formatter('<format>') # Creates a Formatter.
<Handler> = logging.FileHandler(<path>) # Creates a Handler.
<Handler>.setFormatter(<Formatter>) # Adds Formatter to the Handler.
<Handler>.setLevel(<int/str>) # Processes all messages by default.
<Logger>.addHandler(<Handler>) # Adds Handler to the Logger.
<Logger>.setLevel(<int/str>) # What is sent to handlers and parent.
'<parent>.<name>'
.'handlers.RotatingFileHandler'
creates and deletes log files based on 'maxBytes' and 'backupCount' arguments.>>> logging.basicConfig(level='WARNING')
>>> logger = logging.getLogger('my_module')
>>> handler = logging.FileHandler('test.log')
>>> formatter = logging.Formatter('%(asctime)s %(levelname)s:%(name)s:%(message)s')
>>> handler.setFormatter(formatter)
>>> logger.addHandler(handler)
>>> logger.critical('Running out of disk space.')
CRITICAL:my_module:Running out of disk space.
>>> print(open('test.log').read())
2023-02-07 23:21:01,430 CRITICAL:my_module:Running out of disk space.
# $ pip3 install requests beautifulsoup4
import requests, bs4, os, sys
WIKI_URL = 'https://en.wikipedia.org/wiki/Python_(programming_language)'
try:
html = requests.get(WIKI_URL).text
document = bs4.BeautifulSoup(html, 'html.parser')
table = document.find('table', class_='infobox vevent')
python_url = table.find('th', text='Website').next_sibling.a['href']
version = table.find('th', text='Stable release').next_sibling.strings.__next__()
logo_url = table.find('img')['src']
logo = requests.get(f'https:{logo_url}').content
filename = os.path.basename(logo_url)
with open(filename, 'wb') as file:
file.write(logo)
print(f'{python_url}, {version}, file://{os.path.abspath(filename)}')
except requests.exceptions.ConnectionError:
print("You've got problems with connection.", file=sys.stderr)
Flask is a micro web framework/server. If you just want to open a html file in a web browser use 'webbrowser.open(<path>)'
instead.
# $ pip3 install flask
from flask import Flask, send_from_directory, render_template_string, request
app = Flask(__name__)
app.run(host=None, debug=None)
'http://localhost:5000'
. Use 'host="0.0.0.0"'
to run externally.@app.route('/img/<path:filename>')
def serve_file(filename):
return send_from_directory('dirname/', filename)
@app.route('/<sport>')
def serve_html(sport):
return render_template_string('<h1>{{title}}</h1>', title=sport)
'abort(<int>)'
and to redirect use 'redirect(<url>)'
.'request.args[<str>]'
returns parameter from the query string (URL part after '?').'session[key] = value'
to store session data like username, etc.@app.post('/<sport>/odds')
def serve_json(sport):
team = request.form['team']
return {'team': team, 'odds': [2.09, 3.74, 3.68]}
# $ pip3 install requests
>>> import threading, requests
>>> threading.Thread(target=app.run, daemon=True).start()
>>> url = 'http://localhost:5000/football/odds'
>>> request_data = {'team': 'arsenal f.c.'}
>>> response = requests.post(url, data=request_data)
>>> response.json()
{'team': 'arsenal f.c.', 'odds': [2.09, 3.74, 3.68]}
from time import perf_counter
start_time = perf_counter()
...
duration_in_seconds = perf_counter() - start_time
>>> from timeit import timeit
>>> timeit('list(range(10000))', number=1000, globals=globals(), setup='pass')
0.19373
$ pip3 install line_profiler
$ echo "@profile
def main():
a = list(range(10000))
b = set(range(10000))
main()" > test.py
$ kernprof -lv test.py
Line # Hits Time Per Hit % Time Line Contents
=======================================================
1 @profile
2 def main():
3 1 219.0 219.0 31.1 a = list(range(10000))
4 1 487.0 487.0 68.9 b = set(range(10000))
$ pip3 install gprof2dot snakeviz; apt/brew install graphviz
$ tail -n 4 test.py > test.py
$ python3 -m cProfile -o test.prof test.py
$ gprof2dot -f pstats test.prof | dot -Tpng -o test.png; xdg-open/open test.png
$ snakeviz test.prof
┏━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━┓
┃ pip3 install │ How to run │ Target │ Type │ Live ┃
┠──────────────┼───────────────────────────────┼────────────┼──────────┼──────┨
┃ py-spy │ py-spy top -- python3 test.py │ CPU │ Sampling │ Yes ┃
┃ pyinstrument │ pyinstrument test.py │ CPU │ Sampling │ No ┃
┃ scalene │ scalene test.py │ CPU+Memory │ Sampling │ No ┃
┃ memray │ memray run --live test.py │ Memory │ Tracing │ Yes ┃
┃ filprofiler │ fil-profile run test.py │ Memory │ Tracing │ No ┃
┗━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━┛
Array manipulation mini-language. It can run up to one hundred times faster than the equivalent Python code. An even faster alternative that runs on a GPU is called CuPy.
# $ pip3 install numpy
import numpy as np
<array> = np.array(<list/list_of_lists>) # Returns a 1d/2d NumPy array.
<array> = np.zeros/ones(<shape>) # Also np.full(<shape>, <el>).
<array> = np.arange(from_inc, to_exc, ±step) # Also np.linspace(start, stop, len).
<array> = np.random.randint(from_inc, to_exc, <shape>) # Also np.random.random(<shape>).
<view> = <array>.reshape(<shape>) # Also `<array>.shape = <shape>`.
<array> = <array>.flatten() # Also `<view> = <array>.ravel()`.
<view> = <array>.transpose() # Or: <array>.T
<array> = np.copy/abs/sqrt/log/int64(<array>) # Returns new array of the same shape.
<array> = <array>.sum/max/mean/argmax/all(axis) # Passed dimension gets aggregated.
<array> = np.apply_along_axis(<func>, axis, <array>) # Func can return a scalar or array.
<array> = np.concatenate(<list_of_arrays>, axis=0) # Links arrays along first axis (rows).
<array> = np.row_stack/column_stack(<list_of_arrays>) # Treats 1d arrays as rows or columns.
<array> = np.tile/repeat(<array>, <int/list>) # Tiles array or repeats its elements.
<el> = <2d_array>[row_index, column_index] # <3d_a>[table_i, row_i, column_i]
<1d_view> = <2d_array>[row_index] # <3d_a>[table_i, row_i]
<1d_view> = <2d_array>[:, column_index] # <3d_a>[table_i, :, column_i]
<2d_view> = <2d_array>[rows_slice, columns_slice] # <3d_a>[table_i, rows_s, columns_s]
<2d_array> = <2d_array>[row_indexes] # <3d_a>[table_i/is, row_is]
<2d_array> = <2d_array>[:, column_indexes] # <3d_a>[table_i/is, :, column_is]
<1d_array> = <2d_array>[row_indexes, column_indexes] # <3d_a>[table_i/is, row_is, column_is]
<1d_array> = <2d_array>[row_indexes, column_index] # <3d_a>[table_i/is, row_is, column_i]
<2d_bools> = <2d_array> ><== <el/1d/2d_array> # 1d_array must have size of a row.
<1d/2d_a> = <2d_array>[<2d/1d_bools>] # 1d_bools must have size of a column.
'obj[i, j]'
to 'obj[(i, j)]'
!Set of rules by which NumPy functions operate on arrays of different sizes and/or dimensions.
left = [[0.1], [0.6], [0.8]] # Shape: (3, 1)
right = [ 0.1 , 0.6 , 0.8 ] # Shape: (3,)
left = [[0.1], [0.6], [0.8]] # Shape: (3, 1)
right = [[0.1 , 0.6 , 0.8]] # Shape: (1, 3) <- !
left = [[0.1, 0.1, 0.1], # Shape: (3, 3) <- !
[0.6, 0.6, 0.6],
[0.8, 0.8, 0.8]]
right = [[0.1, 0.6, 0.8], # Shape: (3, 3) <- !
[0.1, 0.6, 0.8],
[0.1, 0.6, 0.8]]
[0.1, 0.6, 0.8] => [1, 2, 1]
):>>> points = np.array([0.1, 0.6, 0.8])
[ 0.1, 0.6, 0.8]
>>> wrapped_points = points.reshape(3, 1)
[[ 0.1],
[ 0.6],
[ 0.8]]
>>> distances = wrapped_points - points
[[ 0. , -0.5, -0.7],
[ 0.5, 0. , -0.2],
[ 0.7, 0.2, 0. ]]
>>> distances = np.abs(distances)
[[ 0. , 0.5, 0.7],
[ 0.5, 0. , 0.2],
[ 0.7, 0.2, 0. ]]
>>> i = np.arange(3)
[0, 1, 2]
>>> distances[i, i] = np.inf
[[ inf, 0.5, 0.7],
[ 0.5, inf, 0.2],
[ 0.7, 0.2, inf]]
>>> distances.argmin(1)
[1, 2, 1]
# $ pip3 install pillow
from PIL import Image, ImageDraw
<Image> = Image.new('<mode>', (width, height)) # Also `color=<int/tuple/str>`.
<Image> = Image.open(<path>) # Identifies format based on file contents.
<Image> = <Image>.convert('<mode>') # Converts image to the new mode.
<Image>.save(<path>) # Selects format based on the path extension.
<Image>.show() # Opens image in the default preview app.
<int/tuple> = <Image>.getpixel((x, y)) # Returns a pixel.
<Image>.putpixel((x, y), <int/tuple>) # Writes a pixel to the image.
<ImagingCore> = <Image>.getdata() # Returns a flattened view of the pixels.
<Image>.putdata(<list/ImagingCore>) # Writes a flattened sequence of pixels.
<Image>.paste(<Image>, (x, y)) # Writes passed image to the image.
<Image> = <Image>.filter(<Filter>) # `<Filter> = ImageFilter.<name>([<args>])`
<Image> = <Enhance>.enhance(<float>) # `<Enhance> = ImageEnhance.<name>(<Image>)`
<array> = np.array(<Image>) # Creates NumPy array from the image.
<Image> = Image.fromarray(np.uint8(<array>)) # Use <array>.clip(0, 255) to clip the values.
'1'
- 1-bit pixels, black and white, stored with one pixel per byte.'L'
- 8-bit pixels, greyscale.'RGB'
- 3x8-bit pixels, true color.'RGBA'
- 4x8-bit pixels, true color with transparency mask.'HSV'
- 3x8-bit pixels, Hue, Saturation, Value color space.WIDTH, HEIGHT = 100, 100
n_pixels = WIDTH * HEIGHT
hues = (255 * i/n_pixels for i in range(n_pixels))
img = Image.new('HSV', (WIDTH, HEIGHT))
img.putdata([(int(h), 255, 255) for h in hues])
img.convert('RGB').save('test.png')
from random import randint
add_noise = lambda value: max(0, min(255, value + randint(-20, 20)))
img = Image.open('test.png').convert('HSV')
img.putdata([(add_noise(h), s, v) for h, s, v in img.getdata()])
img.show()
<ImageDraw> = ImageDraw.Draw(<Image>) # Object for adding 2D graphics to the image.
<ImageDraw>.point((x, y)) # Draws a point. Truncates floats into ints.
<ImageDraw>.line((x1, y1, x2, y2 [, ...])) # To get anti-aliasing use Image's resize().
<ImageDraw>.arc((x1, y1, x2, y2), deg1, deg2) # Always draws in clockwise direction.
<ImageDraw>.rectangle((x1, y1, x2, y2)) # To rotate use Image's rotate() and paste().
<ImageDraw>.polygon((x1, y1, x2, y2, ...)) # Last point gets connected to the first.
<ImageDraw>.ellipse((x1, y1, x2, y2)) # To rotate use Image's rotate() and paste().
<ImageDraw>.text((x, y), text, font=<Font>) # `<Font> = ImageFont.truetype(<path>, size)`
'fill=<color>'
to set the primary color.'width=<int>'
to set the width of lines or contours.'outline=<color>'
to set the color of the contours.'#rrggbb[aa]'
string or a color name.# $ pip3 install imageio
from PIL import Image, ImageDraw
import imageio
WIDTH, HEIGHT, R = 126, 126, 10
frames = []
for velocity in range(1, 16):
y = sum(range(velocity))
frame = Image.new('L', (WIDTH, HEIGHT))
draw = ImageDraw.Draw(frame)
draw.ellipse((WIDTH/2-R, y, WIDTH/2+R, y+R*2), fill='white')
frames.append(frame)
frames += reversed(frames[1:-1])
imageio.mimsave('test.gif', frames, duration=0.03)
import wave
<Wave_read> = wave.open('<path>', 'rb') # Opens the WAV file.
framerate = <Wave_read>.getframerate() # Number of frames per second.
nchannels = <Wave_read>.getnchannels() # Number of samples per frame.
sampwidth = <Wave_read>.getsampwidth() # Sample size in bytes.
nframes = <Wave_read>.getnframes() # Number of frames.
<params> = <Wave_read>.getparams() # Immutable collection of above.
<bytes> = <Wave_read>.readframes(nframes) # Returns next 'nframes' frames.
<Wave_write> = wave.open('<path>', 'wb') # Truncates existing file.
<Wave_write>.setframerate(<int>) # 44100 for CD, 48000 for video.
<Wave_write>.setnchannels(<int>) # 1 for mono, 2 for stereo.
<Wave_write>.setsampwidth(<int>) # 2 for CD quality sound.
<Wave_write>.setparams(<params>) # Sets all parameters.
<Wave_write>.writeframes(<bytes>) # Appends frames to the file.
┏━━━━━━━━━━━┯━━━━━━━━━━━┯━━━━━━┯━━━━━━━━━━━┓
┃ sampwidth │ min │ zero │ max ┃
┠───────────┼───────────┼──────┼───────────┨
┃ 1 │ 0 │ 128 │ 255 ┃
┃ 2 │ -32768 │ 0 │ 32767 ┃
┃ 3 │ -8388608 │ 0 │ 8388607 ┃
┗━━━━━━━━━━━┷━━━━━━━━━━━┷━━━━━━┷━━━━━━━━━━━┛
def read_wav_file(filename):
def get_int(bytes_obj):
an_int = int.from_bytes(bytes_obj, 'little', signed=(sampwidth != 1))
return an_int - 128 * (sampwidth == 1)
with wave.open(filename, 'rb') as file:
sampwidth = file.getsampwidth()
frames = file.readframes(-1)
bytes_samples = (frames[i : i+sampwidth] for i in range(0, len(frames), sampwidth))
return [get_int(b) / pow(2, sampwidth * 8 - 1) for b in bytes_samples]
def write_to_wav_file(filename, float_samples, nchannels=1, sampwidth=2, framerate=44100):
def get_bytes(a_float):
a_float = max(-1, min(1 - 2e-16, a_float))
a_float += sampwidth == 1
a_float *= pow(2, sampwidth * 8 - 1)
return int(a_float).to_bytes(sampwidth, 'little', signed=(sampwidth != 1))
with wave.open(filename, 'wb') as file:
file.setnchannels(nchannels)
file.setsampwidth(sampwidth)
file.setframerate(framerate)
file.writeframes(b''.join(get_bytes(f) for f in float_samples))
from math import pi, sin
samples_f = (sin(i * 2 * pi * 440 / 44100) for i in range(100_000))
write_to_wav_file('test.wav', samples_f)
from random import random
add_noise = lambda value: value + (random() - 0.5) * 0.03
samples_f = (add_noise(f) for f in read_wav_file('test.wav'))
write_to_wav_file('test.wav', samples_f)
# $ pip3 install simpleaudio
from simpleaudio import play_buffer
with wave.open('test.wav', 'rb') as file:
p = file.getparams()
frames = file.readframes(-1)
play_buffer(frames, p.nchannels, p.sampwidth, p.framerate)
# $ pip3 install pyttsx3
import pyttsx3
engine = pyttsx3.init()
engine.say('Sally sells seashells by the seashore.')
engine.runAndWait()
# $ pip3 install simpleaudio
import array, itertools as it, math, simpleaudio
F = 44100
P1 = '71♩,69♪,,71♩,66♪,,62♩,66♪,,59♩,,'
P2 = '71♩,73♪,,74♩,73♪,,74♪,,71♪,,73♩,71♪,,73♪,,69♪,,71♩,69♪,,71♪,,67♪,,71♩,,'
get_pause = lambda seconds: it.repeat(0, int(seconds * F))
sin_f = lambda i, hz: math.sin(i * 2 * math.pi * hz / F)
get_wave = lambda hz, seconds: (sin_f(i, hz) for i in range(int(seconds * F)))
get_hz = lambda key: 8.176 * 2 ** (int(key) / 12)
parse_note = lambda note: (get_hz(note[:2]), 1/4 if '♩' in note else 1/8)
get_samples = lambda note: get_wave(*parse_note(note)) if note else get_pause(1/8)
samples_f = it.chain.from_iterable(get_samples(n) for n in f'{P1},{P1},{P2}'.split(','))
samples_i = array.array('h', (int(f * 30000) for f in samples_f))
simpleaudio.play_buffer(samples_i, 1, 2, F)
# $ pip3 install pygame
import pygame as pg
pg.init()
screen = pg.display.set_mode((500, 500))
rect = pg.Rect(240, 240, 20, 20)
while not pg.event.get(pg.QUIT):
deltas = {pg.K_UP: (0, -20), pg.K_RIGHT: (20, 0), pg.K_DOWN: (0, 20), pg.K_LEFT: (-20, 0)}
for event in pg.event.get(pg.KEYDOWN):
dx, dy = deltas.get(event.key, (0, 0))
rect = rect.move((dx, dy))
screen.fill((0, 0, 0))
pg.draw.rect(screen, (255, 255, 255), rect)
pg.display.flip()
Object for storing rectangular coordinates.
<Rect> = pg.Rect(x, y, width, height) # Floats get truncated into ints.
<int> = <Rect>.x/y/centerx/centery/… # Top, right, bottom, left. Allows assignments.
<tup.> = <Rect>.topleft/center/… # Topright, bottomright, bottomleft. Same.
<Rect> = <Rect>.move((delta_x, delta_y)) # Use move_ip() to move in-place.
<bool> = <Rect>.collidepoint((x, y)) # Checks if rectangle contains the point.
<bool> = <Rect>.colliderect(<Rect>) # Checks if two rectangles overlap.
<int> = <Rect>.collidelist(<list_of_Rect>) # Returns index of first colliding Rect or -1.
<list> = <Rect>.collidelistall(<list_of_Rect>) # Returns indexes of all colliding rectangles.
Object for representing images.
<Surf> = pg.display.set_mode((width, height)) # Opens new window and returns its surface.
<Surf> = pg.Surface((width, height)) # New RGB surface. RGBA if `flags=pg.SRCALPHA`.
<Surf> = pg.image.load(<path/file>) # Loads the image. Format depends on source.
<Surf> = pg.surfarray.make_surface(<np_array>) # Also `<np_arr> = surfarray.pixels3d(<Surf>)`.
<Surf> = <Surf>.subsurface(<Rect>) # Creates a new surface from the cutout.
<Surf>.fill(color) # Tuple, Color('#rrggbb[aa]') or Color(<name>).
<Surf>.set_at((x, y), color) # Updates pixel. Also <Surf>.get_at((x, y)).
<Surf>.blit(<Surf>, (x, y)) # Draws passed surface to the surface.
from pygame.transform import scale, ...
<Surf> = scale(<Surf>, (width, height)) # Returns scaled surface.
<Surf> = rotate(<Surf>, anticlock_degrees) # Returns rotated and scaled surface.
<Surf> = flip(<Surf>, x_bool, y_bool) # Returns flipped surface.
from pygame.draw import line, ...
line(<Surf>, color, (x1, y1), (x2, y2), width) # Draws a line to the surface.
arc(<Surf>, color, <Rect>, from_rad, to_rad) # Also ellipse(<Surf>, color, <Rect>, width=0).
rect(<Surf>, color, <Rect>, width=0) # Also polygon(<Surf>, color, points, width=0).
<Font> = pg.font.Font(<path/file>, size) # Loads TTF file. Pass None for default font.
<Surf> = <Font>.render(text, antialias, color) # Background color can be specified at the end.
<Sound> = pg.mixer.Sound(<path/file/bytes>) # Loads WAV file or array of signed shorts.
<Sound>.play/stop() # Also <Sound>.set_volume(<float>).
import collections, dataclasses, enum, io, itertools as it, pygame as pg, urllib.request
from random import randint
P = collections.namedtuple('P', 'x y') # Position
D = enum.Enum('D', 'n e s w') # Direction
W, H, MAX_S = 50, 50, P(5, 10) # Width, Height, Max speed
def main():
def get_screen():
pg.init()
return pg.display.set_mode((W*16, H*16))
def get_images():
url = 'https://gto76.github.io/python-cheatsheet/web/mario_bros.png'
img = pg.image.load(io.BytesIO(urllib.request.urlopen(url).read()))
return [img.subsurface(get_rect(x, 0)) for x in range(img.get_width() // 16)]
def get_mario():
Mario = dataclasses.make_dataclass('Mario', 'rect spd facing_left frame_cycle'.split())
return Mario(get_rect(1, 1), P(0, 0), False, it.cycle(range(3)))
def get_tiles():
border = [(x, y) for x in range(W) for y in range(H) if x in [0, W-1] or y in [0, H-1]]
platforms = [(randint(1, W-2), randint(2, H-2)) for _ in range(W*H // 10)]
return [get_rect(x, y) for x, y in border + platforms]
def get_rect(x, y):
return pg.Rect(x*16, y*16, 16, 16)
run(get_screen(), get_images(), get_mario(), get_tiles())
def run(screen, images, mario, tiles):
clock = pg.time.Clock()
pressed = set()
while not pg.event.get(pg.QUIT) and clock.tick(28):
keys = {pg.K_UP: D.n, pg.K_RIGHT: D.e, pg.K_DOWN: D.s, pg.K_LEFT: D.w}
pressed |= {keys.get(e.key) for e in pg.event.get(pg.KEYDOWN)}
pressed -= {keys.get(e.key) for e in pg.event.get(pg.KEYUP)}
update_speed(mario, tiles, pressed)
update_position(mario, tiles)
draw(screen, images, mario, tiles, pressed)
def update_speed(mario, tiles, pressed):
x, y = mario.spd
x += 2 * ((D.e in pressed) - (D.w in pressed))
x += (x < 0) - (x > 0)
y += 1 if D.s not in get_boundaries(mario.rect, tiles) else (D.n in pressed) * -10
mario.spd = P(x=max(-MAX_S.x, min(MAX_S.x, x)), y=max(-MAX_S.y, min(MAX_S.y, y)))
def update_position(mario, tiles):
x, y = mario.rect.topleft
n_steps = max(abs(s) for s in mario.spd)
for _ in range(n_steps):
mario.spd = stop_on_collision(mario.spd, get_boundaries(mario.rect, tiles))
mario.rect.topleft = x, y = x + (mario.spd.x / n_steps), y + (mario.spd.y / n_steps)
def get_boundaries(rect, tiles):
deltas = {D.n: P(0, -1), D.e: P(1, 0), D.s: P(0, 1), D.w: P(-1, 0)}
return {d for d, delta in deltas.items() if rect.move(delta).collidelist(tiles) != -1}
def stop_on_collision(spd, bounds):
return P(x=0 if (D.w in bounds and spd.x < 0) or (D.e in bounds and spd.x > 0) else spd.x,
y=0 if (D.n in bounds and spd.y < 0) or (D.s in bounds and spd.y > 0) else spd.y)
def draw(screen, images, mario, tiles, pressed):
def get_marios_image_index():
if D.s not in get_boundaries(mario.rect, tiles):
return 4
return next(mario.frame_cycle) if {D.w, D.e} & pressed else 6
screen.fill((85, 168, 255))
mario.facing_left = (D.w in pressed) if {D.w, D.e} & pressed else mario.facing_left
screen.blit(images[get_marios_image_index() + mario.facing_left * 9], mario.rect)
for t in tiles:
screen.blit(images[18 if t.x in [0, (W-1)*16] or t.y in [0, (H-1)*16] else 19], t)
pg.display.flip()
if __name__ == '__main__':
main()
# $ pip3 install pandas matplotlib
import pandas as pd, matplotlib.pyplot as plt
Ordered dictionary with a name.
>>> pd.Series([1, 2], index=['x', 'y'], name='a')
x 1
y 2
Name: a, dtype: int64
<Sr> = pd.Series(<list>) # Assigns RangeIndex starting at 0.
<Sr> = pd.Series(<dict>) # Takes dictionary's keys for index.
<Sr> = pd.Series(<dict/Series>, index=<list>) # Only keeps items with keys specified in index.
<el> = <Sr>.loc[key] # Or: <Sr>.iloc[index]
<Sr> = <Sr>.loc[keys] # Or: <Sr>.iloc[indexes]
<Sr> = <Sr>.loc[from_key : to_key_inclusive] # Or: <Sr>.iloc[from_i : to_i_exclusive]
<el> = <Sr>[key/index] # Or: <Sr>.key
<Sr> = <Sr>[keys/indexes] # Or: <Sr>[<keys_slice/slice>]
<Sr> = <Sr>[bools] # Or: <Sr>.loc/iloc[bools]
<Sr> = <Sr> ><== <el/Sr> # Returns a Series of bools.
<Sr> = <Sr> +-*/ <el/Sr> # Items with non-matching keys get value NaN.
<Sr> = pd.concat(<coll_of_Sr>) # Concats multiple Series into one long Series.
<Sr> = <Sr>.combine_first(<Sr>) # Adds items that are not yet present.
<Sr>.update(<Sr>) # Updates items that are already present.
<Sr>.plot.line/area/bar/pie/hist() # Generates a Matplotlib plot.
plt.show() # Displays the plot. Also plt.savefig(<path>).
<el> = <Sr>.sum/max/mean/idxmax/all() # Or: <Sr>.agg(lambda <Sr>: <el>)
<Sr> = <Sr>.rank/diff/cumsum/ffill/interpl() # Or: <Sr>.agg/transform(lambda <Sr>: <Sr>)
<Sr> = <Sr>.fillna(<el>) # Or: <Sr>.agg/transform/map(lambda <el>: <el>)
>>> sr = pd.Series([1, 2], index=['x', 'y'])
x 1
y 2
┏━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━┓
┃ │ 'sum' │ ['sum'] │ {'s': 'sum'} ┃
┠───────────────┼─────────────┼─────────────┼───────────────┨
┃ sr.apply(…) │ 3 │ sum 3 │ s 3 ┃
┃ sr.agg(…) │ │ │ ┃
┗━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┛
┏━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━┓
┃ │ 'rank' │ ['rank'] │ {'r': 'rank'} ┃
┠───────────────┼─────────────┼─────────────┼───────────────┨
┃ sr.apply(…) │ │ rank │ ┃
┃ sr.agg(…) │ x 1 │ x 1 │ r x 1 ┃
┃ │ y 2 │ y 2 │ y 2 ┃
┗━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┛
'obj[x, y]'
is converted to 'obj[(x, y)]'
!'inplace=True'
.'<Sr>[key_1, key_2]'
to get its values.Table with labeled rows and columns.
>>> pd.DataFrame([[1, 2], [3, 4]], index=['a', 'b'], columns=['x', 'y'])
x y
a 1 2
b 3 4
<DF> = pd.DataFrame(<list_of_rows>) # Rows can be either lists, dicts or series.
<DF> = pd.DataFrame(<dict_of_columns>) # Columns can be either lists, dicts or series.
<el> = <DF>.loc[row_key, column_key] # Or: <DF>.iloc[row_index, column_index]
<Sr/DF> = <DF>.loc[row_key/s] # Or: <DF>.iloc[row_index/es]
<Sr/DF> = <DF>.loc[:, column_key/s] # Or: <DF>.iloc[:, column_index/es]
<DF> = <DF>.loc[row_bools, column_bools] # Or: <DF>.iloc[row_bools, column_bools]
<Sr/DF> = <DF>[column_key/s] # Or: <DF>.column_key
<DF> = <DF>[row_bools] # Keeps rows as specified by bools.
<DF> = <DF>[<DF_of_bools>] # Assigns NaN to False values.
<DF> = <DF> ><== <el/Sr/DF> # Returns DF of bools. Sr is treated as a row.
<DF> = <DF> +-*/ <el/Sr/DF> # Items with non-matching keys get value NaN.
<DF> = <DF>.set_index(column_key) # Replaces row keys with values from a column.
<DF> = <DF>.reset_index(drop=False) # Drops or moves row keys to column named index.
<DF> = <DF>.sort_index(ascending=True) # Sorts rows by row keys. Use `axis=1` for cols.
<DF> = <DF>.sort_values(column_key/s) # Sorts rows by the passed column/s. Same.
>>> l = pd.DataFrame([[1, 2], [3, 4]], index=['a', 'b'], columns=['x', 'y'])
x y
a 1 2
b 3 4
>>> r = pd.DataFrame([[4, 5], [6, 7]], index=['b', 'c'], columns=['y', 'z'])
y z
b 4 5
c 6 7
┏━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ │ 'outer' │ 'inner' │ 'left' │ Description ┃
┠────────────────────────┼───────────────┼────────────┼────────────┼──────────────────────────┨
┃ l.merge(r, on='y', │ x y z │ x y z │ x y z │ Merges on column if 'on' ┃
┃ how=…) │ 0 1 2 . │ 3 4 5 │ 1 2 . │ or 'left/right_on' are ┃
┃ │ 1 3 4 5 │ │ 3 4 5 │ set, else on shared cols.┃
┃ │ 2 . 6 7 │ │ │ Uses 'inner' by default. ┃
┠────────────────────────┼───────────────┼────────────┼────────────┼──────────────────────────┨
┃ l.join(r, lsuffix='l', │ x yl yr z │ │ x yl yr z │ Merges on row keys. ┃
┃ rsuffix='r', │ a 1 2 . . │ x yl yr z │ 1 2 . . │ Uses 'left' by default. ┃
┃ how=…) │ b 3 4 4 5 │ 3 4 4 5 │ 3 4 4 5 │ If r is a Series, it is ┃
┃ │ c . . 6 7 │ │ │ treated as a column. ┃
┠────────────────────────┼───────────────┼────────────┼────────────┼──────────────────────────┨
┃ pd.concat([l, r], │ x y z │ y │ │ Adds rows at the bottom. ┃
┃ axis=0, │ a 1 2 . │ 2 │ │ Uses 'outer' by default. ┃
┃ join=…) │ b 3 4 . │ 4 │ │ A Series is treated as a ┃
┃ │ b . 4 5 │ 4 │ │ column. To add a row use ┃
┃ │ c . 6 7 │ 6 │ │ pd.concat([l, DF([sr])]).┃
┠────────────────────────┼───────────────┼────────────┼────────────┼──────────────────────────┨
┃ pd.concat([l, r], │ x y y z │ │ │ Adds columns at the ┃
┃ axis=1, │ a 1 2 . . │ x y y z │ │ right end. Uses 'outer' ┃
┃ join=…) │ b 3 4 4 5 │ 3 4 4 5 │ │ by default. A Series is ┃
┃ │ c . . 6 7 │ │ │ treated as a column. ┃
┠────────────────────────┼───────────────┼────────────┼────────────┼──────────────────────────┨
┃ l.combine_first(r) │ x y z │ │ │ Adds missing rows and ┃
┃ │ a 1 2 . │ │ │ columns. Also updates ┃
┃ │ b 3 4 5 │ │ │ items that contain NaN. ┃
┃ │ c . 6 7 │ │ │ R must be a DataFrame. ┃
┗━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━┛
<Sr> = <DF>.sum/max/mean/idxmax/all() # Or: <DF>.apply/agg(lambda <Sr>: <el>)
<DF> = <DF>.rank/diff/cumsum/ffill/interpl() # Or: <DF>.apply/agg/transfrm(lambda <Sr>: <Sr>)
<DF> = <DF>.fillna(<el>) # Or: <DF>.applymap(lambda <el>: <el>)
'axis=1'
to process the rows instead.>>> df = pd.DataFrame([[1, 2], [3, 4]], index=['a', 'b'], columns=['x', 'y'])
x y
a 1 2
b 3 4
┏━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━┓
┃ │ 'sum' │ ['sum'] │ {'x': 'sum'} ┃
┠─────────────────┼─────────────┼─────────────┼───────────────┨
┃ df.apply(…) │ │ x y │ ┃
┃ df.agg(…) │ x 4 │ sum 4 6 │ x 4 ┃
┃ │ y 6 │ │ ┃
┗━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┛
┏━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━┓
┃ │ 'rank' │ ['rank'] │ {'x': 'rank'} ┃
┠─────────────────┼─────────────┼─────────────┼───────────────┨
┃ df.apply(…) │ x y │ x y │ x ┃
┃ df.agg(…) │ a 1 1 │ rank rank │ a 1 ┃
┃ df.transform(…) │ b 2 2 │ a 1 1 │ b 2 ┃
┃ │ │ b 2 2 │ ┃
┗━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┛
'<DF>[col_key_1, col_key_2][row_key]'
to get the fifth result's values.<DF>.plot.line/area/bar/hist/scatter/box() # Also: `x=column_key, y=column_key/s`.
plt.show() # Displays the plot. Also plt.savefig(<path>).
<DF> = pd.read_json/html('<str/path/url>') # Run `$ pip3 install beautifulsoup4 lxml`.
<DF> = pd.read_csv/pickle/excel('<path/url>') # Use `sheet_name=None` to get all Excel sheets.
<DF> = pd.read_sql('<table/query>', <conn.>) # Accepts SQLite3 or SQLAlchemy connection.
<DF> = pd.read_clipboard() # Reads a copied table from the clipboard.
<dict> = <DF>.to_dict(['d/l/s/…']) # Returns columns as dicts, lists or series.
<str> = <DF>.to_json/html/csv([<path>]) # Also to_markdown/latex([<path>]).
<DF>.to_pickle/excel(<path>) # Run `$ pip3 install "pandas[excel]" odfpy`.
<DF>.to_sql('<table_name>', <connection>) # Accepts SQLite3 or SQLAlchemy connection.
Object that groups together rows of a dataframe based on the value of the passed column.
>>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 6]], list('abc'), list('xyz'))
>>> df.groupby('z').get_group(6)
x y z
b 4 5 6
c 7 8 6
<GB> = <DF>.groupby(column_key/s) # Splits DF into groups based on passed column.
<DF> = <GB>.apply(<func>) # Maps each group. Func can return DF, Sr or el.
<GB> = <GB>[column_key] # Single column GB. All operations return a Sr.
<DF> = <GB>.sum/max/mean/idxmax/all() # Or: <GB>.agg(lambda <Sr>: <el>)
<DF> = <GB>.rank/diff/cumsum/ffill() # Or: <GB>.transform(lambda <Sr>: <Sr>)
<DF> = <GB>.fillna(<el>) # Or: <GB>.transform(lambda <Sr>: <Sr>)
>>> gb = df.groupby('z')
x y z
3: a 1 2 3
6: b 4 5 6
c 7 8 6
┏━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━┓
┃ │ 'sum' │ 'rank' │ ['rank'] │ {'x': 'rank'} ┃
┠─────────────────┼─────────────┼─────────────┼─────────────┼───────────────┨
┃ gb.agg(…) │ x y │ x y │ x y │ x ┃
┃ │ z │ a 1 1 │ rank rank │ a 1 ┃
┃ │ 3 1 2 │ b 1 1 │ a 1 1 │ b 1 ┃
┃ │ 6 11 13 │ c 2 2 │ b 1 1 │ c 2 ┃
┃ │ │ │ c 2 2 │ ┃
┠─────────────────┼─────────────┼─────────────┼─────────────┼───────────────┨
┃ gb.transform(…) │ x y │ x y │ │ ┃
┃ │ a 1 2 │ a 1 1 │ │ ┃
┃ │ b 11 13 │ b 1 1 │ │ ┃
┃ │ c 11 13 │ c 2 2 │ │ ┃
┗━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┛
Object for rolling window calculations.
<RSr/RDF/RGB> = <Sr/DF/GB>.rolling(win_size) # Also: `min_periods=None, center=False`.
<RSr/RDF/RGB> = <RDF/RGB>[column_key/s] # Or: <RDF/RGB>.column_key
<Sr/DF> = <R>.mean/sum/max() # Or: <R>.apply/agg(<agg_func/str>)
# $ pip3 install plotly kaleido
from plotly.express import line
<Figure> = line(<DF>, x=<col_name>, y=<col_name>) # Or: line(x=<list>, y=<list>)
<Figure>.update_layout(margin=dict(t=0, r=0, b=0, l=0), …) # `paper_bgcolor='rgb(0, 0, 0)'`.
<Figure>.write_html/json/image('<path>') # Also <Figure>.show().
covid = pd.read_csv('https://covid.ourworldindata.org/data/owid-covid-data.csv',
usecols=['iso_code', 'date', 'total_deaths', 'population'])
continents = pd.read_csv('https://gist.githubusercontent.com/stevewithington/20a69c0b6d2ff'
'846ea5d35e5fc47f26c/raw/country-and-continent-codes-list-csv.csv',
usecols=['Three_Letter_Country_Code', 'Continent_Name'])
df = pd.merge(covid, continents, left_on='iso_code', right_on='Three_Letter_Country_Code')
df = df.groupby(['Continent_Name', 'date']).sum().reset_index()
df['Total Deaths per Million'] = df.total_deaths * 1e6 / df.population
df = df[df.date > '2020-03-14']
df = df.rename({'date': 'Date', 'Continent_Name': 'Continent'}, axis='columns')
line(df, x='Date', y='Total Deaths per Million', color='Continent').show()
import pandas as pd, plotly.graph_objects as go
def main():
display_data(wrangle_data(*scrape_data()))
def scrape_data():
def scrape_covid():
url = 'https://covid.ourworldindata.org/data/owid-covid-data.csv'
df = pd.read_csv(url, usecols=['location', 'date', 'total_cases'])
return df[df.location == 'World'].set_index('date').total_cases
def scrape_yahoo(slug):
url = (f'https://query1.finance.yahoo.com/v7/finance/download/{slug}?'
'period1=1579651200&period2=9999999999&interval=1d&events=history')
df = pd.read_csv(url, usecols=['Date', 'Close'])
return df.set_index('Date').Close
out = scrape_covid(), scrape_yahoo('BTC-USD'), scrape_yahoo('GC=F'), scrape_yahoo('^DJI')
return map(pd.Series.rename, out, ['Total Cases', 'Bitcoin', 'Gold', 'Dow Jones'])
def wrangle_data(covid, bitcoin, gold, dow):
df = pd.concat([bitcoin, gold, dow], axis=1) # Joins columns on dates.
df = df.sort_index().interpolate() # Sorts by date and interpolates NaN-s.
df = df.loc['2020-02-23':] # Discards rows before '2020-02-23'.
df = (df / df.iloc[0]) * 100 # Calculates percentages relative to day 1.
df = df.join(covid) # Adds column with covid cases.
return df.sort_values(df.index[-1], axis=1) # Sorts columns by last day's value.
def display_data(df):
figure = go.Figure()
for col_name in reversed(df.columns):
yaxis = 'y1' if col_name == 'Total Cases' else 'y2'
trace = go.Scatter(x=df.index, y=df[col_name], name=col_name, yaxis=yaxis)
figure.add_trace(trace)
figure.update_layout(
yaxis1=dict(title='Total Cases', rangemode='tozero'),
yaxis2=dict(title='%', rangemode='tozero', overlaying='y', side='right'),
legend=dict(x=1.1),
height=450
)
figure.show()
if __name__ == '__main__':
main()
# $ pip3 install PySimpleGUI
import PySimpleGUI as sg
layout = [[sg.Text("What's your name?")], [sg.Input()], [sg.Button('Ok')]]
window = sg.Window('Window Title', layout)
event, values = window.read()
print(f'Hello {values[0]}!' if event == 'Ok' else '')
Library that compiles Python code into C.
# $ pip3 install cython
import pyximport; pyximport.install()
import <cython_script>
<cython_script>.main()
'cdef'
definitions are optional, but they contribute to the speed-up.'pyx'
extension.cdef <ctype> <var_name> = <el>
cdef <ctype>[n_elements] <var_name> = [<el>, <el>, ...]
cdef <ctype/void> <func_name>(<ctype> <arg_name>): ...
cdef class <class_name>:
cdef public <ctype> <attr_name>
def __init__(self, <ctype> <arg_name>):
self.<attr_name> = <arg_name>
cdef enum <enum_name>: <member_name>, <member_name>, ...
$ pip3 install pyinstaller
$ pyinstaller script.py # Compiles into './dist/script' directory.
$ pyinstaller script.py --onefile # Compiles into './dist/script' console app.
$ pyinstaller script.py --windowed # Compiles into './dist/script' windowed app.
$ pyinstaller script.py --add-data '<path>:.' # Adds file to the root of the executable.
'os.path.join(sys._MEIPASS, <path>)'
.#!/usr/bin/env python3
#
# Usage: .py
#
from sys import argv, exit
from collections import defaultdict, namedtuple
from dataclasses import make_dataclass
from enum import Enum
import functools as ft, itertools as it, operator as op, re
def main():
pass
###
## UTIL
#
def read_file(filename):
with open(filename, encoding='utf-8') as file:
return file.readlines()
if __name__ == '__main__':
main()